
1. INTRODUCTION
Distribution identification is indispensable across 

domains such as finance, healthcare, manufacturing, 
and more. In finance, understanding data distributions 
aids in risk assessment, portfolio management, and 
financial modelling [1, 11]. It facilitates disease 
diagnosis, treatment optimization, and epidemiological 
studies in healthcare [2, 12]. Furthermore, it optimizes 
production processes, ensures product quality, and 
minimizes downtime in manufacturing [3]. Across all 
domains, accurate distribution identification underpins 
informed decision-making, process optimization, and 
performance enhancement.

Understanding the data distribution helps identify 
underlying patterns by revealing the frequency and 
distribution of different values within the dataset. This 
understanding enables analysts to recognize trends, 

correlations, and relationships between variables. 
Identifying anomalies becomes easier when the expected 
data distribution is known, as any deviations from this 
distribution can signal potential errors, outliers, or 
unusual events. Moreover, optimizing processes relies 
on understanding the data distribution to identify areas 
for improvement, streamline operations, and enhance 
efficiency. Making informed decisions also benefits 
from knowledge of the data distribution, as it provides 
context for interpreting results, evaluating risks, and 
selecting appropriate strategies based on the dataset’s 
characteristics.

The traditional approach to identifying data 
distribution involves statistical methods such as 
histograms, box plots and more. Analysts manually 
inspect data visualizations and perform hypothesis 
tests such as the Kolmogorov-Smirnov or Shapiro-
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Wilk tests. This method relies on assumptions about 
the underlying distribution and may require multiple 
iterations to determine the best-fitting distribution [4]. 
However, it can be time-consuming and subjective, and 
complex patterns in the data may need to be captured 
more effectively. Moreover, the traditional method of 
distribution identification relies on assumptions about 
the underlying distribution, which may only sometimes 
hold true in real-world datasets. Manual inspection of 
data visualizations and statistical tests can be time-
consuming and subjective, leading to potential biases 
and inaccuracies. Overall, these issues highlight the 
need for more efficient and automated approaches to 
distribution identification.

Moreover, there is a pressing demand for alternative 
methods in data distribution identification that offer 
both speed and accuracy. This need arises particularly 
in domains like the stock market and manufacturing 
plants, where vast volumes of data are generated 
rapidly. Traditional methods often fall short in handling 
the sheer scale and velocity of data production in these 
domains. As a result, there is a growing urgency to 
develop faster and more precise techniques to identify 
data distributions, enabling real-time decision-making 
and optimization processes in these critical sectors.

In this scenario, Machine Learning and Deep 
Learning (ML/DL) emerge as one potential solution. 
ML/DL models are increasingly utilized for 
classification tasks across diverse domains due to 
their ability to learn complex patterns from data. In 
healthcare, these models aid in disease diagnosis, 
medical image analysis, and personalized treatment 
recommendations [5]. In finance, they enable fraud 
detection, credit risk assessment, and algorithmic 
trading strategies [6]. In manufacturing, they optimize 
quality control processes, predictive maintenance, and 
supply chain management [7]. Across domains, ML/DL 
models empower automated decision-making, enhance 
efficiency, and drive innovation.

Generally, multi-class classification refers to an 
ML/DL task that aims to classify input data points 
into one of several predefined classes or categories. In 
this task, each data point can belong to only one class 
out of multiple possible classes. Inputs to a multi-
class classification task typically consist of features 
or attributes that describe the characteristics of the 
data points. These features could be numerical values, 
categorical variables, or even more complex data 

structures like images or text. The output of a multi-
class classification task is the predicted class label for 
each input data point. The model assigns a probability 
distribution over all possible classes, and the class with 
the highest probability is considered the predicted class 
for that data point. The output is often represented as a 
vector of probabilities, where each element corresponds 
to the probability of the corresponding class.

The proposed approach leverages ML/DL models 
to automate the classification of data distributions. By 
preprocessing data points, scaling them to a uniform 
range and employing Convolutional Neural Networks 
(CNNs) followed by densely connected layers, the 
model aims to accurately identify the underlying 
distribution among common options such as normal, 
uniform, exponential, log-normal and beta distributions. 
This automated approach offers scalability, efficiency 
and robustness, addressing the limitations of traditional 
manual methods and providing valuable insights across 
various industries.

The selection of only five distributions provides 
a diverse yet manageable set of common statistical 
distributions, ensuring the model is trained on 
a representative sample of distribution types. If 
researchers wish to expand the classification task, 
they must incorporate additional distributions and 
their respective synthetic datasets into the training 
process, potentially adjusting the model architecture 
to handle increased complexity. Conversely, reducing 
the classification task would involve excluding some 
distributions and retraining the model to ensure it 
maintains high accuracy with fewer classes, potentially 
simplifying the model’s architecture.

The novel contributions of this research work 
include:

● Proposing an automated approach for 
identifying data distributions using ML/DL 
models.

● Implementing convolutional neural networks 
(CNNs) followed by densely connected layers 
for efficient and accurate classification of data 
distributions.

● Introduces a preprocessing step to scale data 
points to a uniform range and employs sorting 
techniques to enhance classification accuracy.

● Demonstrating the effectiveness of the 
proposed approach in overcoming limitations 
of traditional manual methods, providing 
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scalable and robust solutions for distribution 
identification across diverse domains.

In the current scenario, the challenges faced 
by current researchers in performing the task of 
identifying data distributions include the absence of 
a framework guiding data preparation to aid ML/DL 
models in predicting data distribution. Additionally, 
there’s a lack of systems to train ML/DL models for 
distribution classification and generate data points for 
model development encompassing training, validation, 
and testing phases. These challenges were addressed 
by proposing an automated approach, introducing 
preprocessing steps, implementing CNNs followed 
by densely connected layers, and demonstrating the 
approach’s effectiveness in overcoming the limitations 
of traditional manual methods.

2. METHODOLOGY
The proposed methodology automates the process 

of generating synthetic data points, performing 
distribution tests, preprocessing the data, training a 
neural network model, and evaluating its performance 
for the classification of data distributions. The whole 
study can be divided into two parts, i.e., the Data 
Preparation stage and the Model Development and 
Evaluation stage (Fig. 1).

Fig. 1. Methodology undertaken to develop the proposed Deep 
Distribution Classifier (DDC)

1. Data preparation
a. Data Generation: In the data preparation stage 

of the study, several steps are undertaken 
to generate synthetic data points, perform 
distribution tests, and preprocess the data for 
training the neural network model. Initially, 
the process begins with data generation, 
where empty lists are initialized to store input 
data points and corresponding p-values for 
distribution tests, respectively. The number 

of desired generations is set to 1000 (overall, 
1000 datasets are generated in the simulation, 
where each dataset contains 1000 values, 
which belong to either one of the undertaken 
distributions). Moreover, a counter is initialized 
to track the number of generated data points. 
Within a loop, data points are generated for 
each distribution type (normal, exponential, 
uniform, log-normal, beta) using random 
parameters sampled from specified ranges 
[8, 13-15]. Description of the distributions 
undertaken in the presented study is as follows:

I. A normal distribution, also known as Gaussian 
distribution, is a symmetric probability 
distribution where data is symmetrically 
distributed around the mean. Its formula is 
given by eq. (1).

   (1)

 where,  represents the mean and  represents 
the standard deviation. In general, the mean 
can range from negative infinity to positive 
infinity, covering all real numbers. The standard 
deviation must be a non-negative real number, 
so its range typically starts from zero and 
extends to positive infinity.

II. The exponential distribution describes the time 
between events in a Poisson process, where 
events occur continuously and independently 
at a constant average rate over time. Its 
probability density function (PDF) is given by 
eq. (2).

   (2)
 where,  is the time, and  is the rate parameter. 

Its range is limited to positive real numbers, as 
it dictates the rate at which events occur over 
time.

III. The uniform distribution represents outcomes 
where each value within a given range has 
equal probability. Its PDF is defined as given 
in eq. (3).

   (3)

 where,  and  are the lower and upper bounds 
of the range, respectively. Where  and  are 
real numbers and .

IV. The log-normal distribution is characterized 
by data whose logarithms follow a normal 
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distribution, often representing skewed data. 
Its PDF is defined as given in eq. (4).

   (4)

 where,  is the mean and  is the standard 
deviation of the logarithm of the variable . 
Here  can take any real value, and  must be 
greater than 0.

V. The beta distribution represents the variability 
of probabilities over a fixed interval, commonly 
used for modelling proportions or rates. Its 
PDF is defined as given in eq. (5).

   (5)

 where,  and  are shape parameters, and 
 is the beta function. Both  and  must 

be positive real numbers greater than zero.
 For each distribution type, the computer 

program invokes the `generate_test_values` 
function to perform distribution tests and obtain 
p-values. If the p-value exceeds the threshold 
of 0.05, indicating a valid distribution, the 
data points and corresponding p-values are 
appended to the dataset. This process iterates 
until the desired number of valid data points is 
generated.

 In our study, random selection of population 
distribution parameters refers to the process 
of selecting parameters such as scale, location, 
shape and rate for each distribution from 
predefined ranges of (0-2), (0-1), (1-2), and (0-
1), respectively. This randomness allows for the 
generation of diverse data points representing 
various distributions. For instance, in the 
normal distribution, a random selection of 
mean (location) and standard deviation 
(scale) produces data points with different 
central tendencies and spreads. Similarly, in 
the uniform distribution, random selection 
of minimum and maximum values (location 
and scale) generates data points uniformly 
distributed within the specified range. This 
approach ensures that each distribution is 
represented by a wide range of data points, 
enhancing the model’s ability to effectively 
learn and classify different distribution 
patterns.

b. In the data generation process, the `generate_test_
values` function is crucial in conducting distribution 
tests for the generated data points. It takes the data 
points along with parameters such as scale, loc, a, 
and b as inputs. A dictionary inside the function is 
initialized to store p-values obtained from different 
distribution tests. Necessary functions from `scipy.
stats` python library are imported to perform tests 
for normal, uniform, exponential, log-normal, 
and beta distributions. For each distribution, the 
function executes the respective test and stores 
the resulting p-value in the dictionary. Finally, the 
function returns the dictionary containing p-values 
for each distribution test.

c. Preprocessing and Scaling: Following data 
generation and distribution testing, the data 
undergoes preprocessing and scaling to prepare 
it for training the neural network model. The 
input data points are scaled from 0 to 1 using 
the `MinMaxScaler`, a preprocessing technique 
commonly employed in machine learning tasks. 
The equation for Min-Max scaling to scale data 
between 0 and 1 is given by eq. (6).

   (6)

 Where,  is the scaled value,  is the original 
value,  is the minimum value in the dataset 
and  is the maximum value in the dataset. 
Subsequently, the scaled data points are sorted to 
ensure uniformity and consistency in the input 
data. This preprocessing step is crucial as it 
standardizes the input data and enhances the 
convergence and performance of the neural 
network model during training. Overall, the data 
preparation stage lays the foundation for subsequent 
model training and evaluation by generating 
synthetic data, conducting distribution tests, and 
preparing the data for machine learning algorithms. 
After scaling the data points, the values are sorted 
in ascending order. Sorting is used as a preprocessing 
step to standardize the input data, making patterns 
within different distributions more apparent to the 
deep learning model. By arranging data points in a 
specific order, the inherent characteristics of each 
distribution become more distinguishable, aiding 
the model in learning and identifying distribution-
specific features more effectively. This step 
enhances the model’s ability to discern subtle 
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differences between distributions, thereby 
improving classification accuracy and robustness.

2. Model Development and Evaluation Stage
a. Data splitting and Model building: In this step, the 

data is split into training, validation, and testing 
sets, a common practice in ML/DL that assesses 
model performance on unseen data. The training 
dataset is used to train the model’s parameters, the 
validation dataset is used to tune hyperparameters 
and prevent overfitting, and the testing dataset 
is used to evaluate the model’s performance on 
unseen data. In our study, a ratio of 80:10:10 was 
used for training, validation, and testing datasets, 
respectively, to ensure adequate model training, 
tuning, and evaluation while maintaining a balance 
between dataset sizes.

 Subsequently, a convolutional neural network 
(CNN) model is defined, which allows for the 
sequential stacking of layers. The architecture of 
the CNN model comprises a convolutional layer, 
a max-pooling layer to downsample feature maps, 
a flattening layer to convert the multidimensional 
data into a vector, densely connected layers to 
perform classification, and a softmax output 
layer for multi-class classification [9]. The CNN 
model utilized in the study is designed for feature 
extraction and hierarchical learning from input 
data. Its core equation involves convolving input 
data with learnable filters, followed by activation 
functions and pooling operations to extract relevant 
features. This process is represented in eq. (7).

   (7)
 Where,  represents the output of the convolution 

operation at layer ,  denotes the learnable filters 
(also called kernels) specific to layer ,  is the 
activation map from the previous layer, ,  
is the bias term associated with the convolutional 
layer  and  denotes the convolution operation, 
where the filter is applied to the input data.

b. Model Training: Following the model architecture 
definition, the model is compiled using the 
Adam optimizer and categorical cross-entropy 
loss function, which is suitable for multi-class 
classification tasks. With the compiled model, 
training commences on the training data for a 
specified number of epochs, in this case, 100 
epochs. During training, the model learns to map 

input data to their corresponding output classes, 
iteratively adjusting its parameters to minimize the 
loss function. Here, backpropagation is a crucial 
algorithm used to train the compiled CNN model. 
It calculates the gradient of the loss function with 
respect to the network weights, enabling weight 
updates to minimize the error. The algorithm 
operates in two phases: the forward pass, where 
inputs are fed through the network to make 
predictions, and the backward pass, where errors 
are propagated backwards through the network 
to update the weights. The formula for updating 
weights using backpropagation is given by eq. (8).

  (8)

 Where,  is the change in weight between 
neuron  and neuron ,  is the learning rate,  is 
the partial derivative of the error with respect to the 
weight .

 An activation function in a neural network defines 
the output of a neuron given an input or set of 
inputs. It introduces non-linearity into the model, 
allowing it to learn complex patterns and make 
accurate predictions. The model undertaken in the 
study uses two widely used activation function, 
i.e. ReLU activation function and the softmax 
activation function.

 The ReLU (Rectified Linear Unit) activation 
function is defined as . It 
outputs the input directly if it is positive; otherwise, 
it outputs zero, aiding in faster and more effective 
training by mitigating the vanishing gradient 
problem. The softmax activation function is defined 
as given in eq. (9).

   (9)

 It converts a vector of raw scores into probabilities, 
with each value ranging between 0 and 1, and their 
sum equal to 1, making it suitable for multi-class 
classification tasks.

c. Model Evaluation: After training, the model’s 
performance is evaluated on the unseen test data, 
which computes the loss and accuracy metrics. 
These metrics provide insights into how well 
the model generalizes to new, unseen data. The 
obtained loss and accuracy metrics are displayed 
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to quantitatively assess the model’s performance. 
In multi-class classification CNN models, the loss 
metric commonly used is categorical crossentropy, 
which calculates the difference between predicted 
and actual class probabilities across all classes 
[10]. Its formula is given by eq. (10).

  (10)

 Here,  is the number of samples,  is the number 
of classes,  is the indicator function (1 if sample 
 belongs to class , 0 otherwise), and  is the 

predicted probability of sample  belonging to class 
. Moreover, accuracy is a common metric used to 

evaluate model performance, representing the 
proportion of correctly classified samples out of the 
total samples. Its formula is given by eq. (11).

  
 (11)

 For further validation and demonstration purposes, 
the code predicts the output for the first 5 test 
samples using the trained model and prints both 
the true and predicted values. This step allows for 
a qualitative assessment of the model’s predictive 
capabilities.

d. Model Storage: Lastly, to ensure the model’s 
reusability and accessibility, it is saved to a file. This 
enables easy retrieval and utilization of the trained 
model for future tasks without retraining it from 
scratch. Additionally, there is also the functionality 
to load the saved model back into memory, 
facilitating seamless integration into other projects 
or applications. Overall, these steps encompass the 
model development, evaluation, and management 
processes, ensuring the robustness and usability of 
the trained neural network model.

3. RESULTS AND DISCUSSION
The architecture of the model developed in the 

study consists of a sequential stack of layers (Fig. 
2). The initial layer is a 1-dimensional convolutional 
layer with 64 filters, a kernel size of 3, and ReLU 
activation function. It takes input data of shape (1000, 
1), where 1000 represents the number of data points 
and 1 represents the number of features. Following 
the convolutional layer is a max-pooling layer with a 

pool size of 2, which reduces the spatial dimensions of 
the input. The output of the pooling layer is flattened 
into a one-dimensional array using the `Flatten` layer. 
Then, two densely connected layers are added, the first 
with 32 units and ReLU activation function, and the 
second with 5 units and softmax activation function, 
representing the output classes. The model is compiled 
using the Adam optimizer, categorical cross-entropy 
loss function, and accuracy metric for evaluation.

Fig. 2. Architectural details of the developed CNN-based Distribution 
Classification Model

Fig. 3 represents the performance metrics of the 
CNN-based model trained on a dataset over multiple 
epochs. The X-axis corresponds to a specific epoch 
during the training process, and the y-axis presents the 
loss and accuracy values achieved by the model on the 
training dataset at each epoch. From the figure, it is 
observed that, initially, at epoch 10, the model has a 
relatively high loss value of 1.2468 and a low accuracy 
of 0.3827, indicating poor performance. However, 
as training progresses, the loss steadily decreases, 
reaching significantly lower values by epoch 50 (0.056) 
and continuing to decrease thereafter. Similarly, the 
model’s accuracy improves over time, starting from 
0.3827 at epoch 10 and reaching a high of 0.9988 by 
epoch 60. Towards the end of training, the loss plateaus, 
indicating that the model has converged to a stable state 
where further training may not significantly improve 
performance. Similarly, the accuracy also stabilizes, 
indicating that the model has learned to classify the 
training data accurately.

The figure also presents the performance metrics 
evaluated on a validation dataset across different 
epochs during the training process. From the figure, it 
is observed that at the beginning of training (epoch 10), 
the model’s loss is relatively high (0.7236), indicating 
that the model’s predictions deviate significantly 
from the actual values. However, the accuracy is 
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moderate (0.6222), indicating that a substantial 
portion of the data points is correctly classified. As 
training progresses, both loss and accuracy improve. 
By epoch 30, the loss decreases to 0.2587, indicating 
better model performance in minimizing prediction 
errors. Additionally, the accuracy increases to 0.9444, 
indicating that a higher proportion of data points is 
correctly classified. Beyond epoch 30, the loss decreases 
gradually, reaching its lowest value at epoch 90 
(0.1384), indicating further improvement in predictive 
accuracy. However, there is a slight fluctuation in loss 
and accuracy values in later epochs, suggesting some 
instability in the model’s performance. Overall, the 
validation dataset’s loss decreases over epochs while 
accuracy remains relatively stable, indicating that 
the model is improving its ability to make accurate 
predictions. The consistency in accuracy values 
suggests that the model’s performance is robust and 
generalizes well to unseen data.

Fig. 4 presents the performance metrics of a trained 
CNN-based model on three different datasets: training, 
validation, and testing. From the figure, it is observed 
that the loss on the training dataset is 0.0127, which 
indicates the average discrepancy between the model’s 
predictions and the actual values in the training dataset. 

Fig. 3. The Accuracy and Loss across the 100 epochs employed for training the model

The accuracy on the training dataset is 0.9975, indicating 
the proportion of correctly classified data points out of 
the total number of data points in the training dataset. 
A high accuracy value indicates that the model makes 
accurate predictions on the training data. The loss on 
the validation dataset is 0.143, with the accuracy on 
the validation dataset being 0.9444, indicating the 
proportion of correctly classified data points out of the 
total number of data points in the validation dataset. A 
high accuracy value indicates that the model performs 
well on the validation data, although it may not be as 
high as the training accuracy.

The loss on the testing dataset is 0.0551; the 
loss value is intermediate between the training and 
validation losses, indicating that the model performs 
reasonably well on unseen data. The accuracy on the 
testing dataset is 0.9901, indicating the proportion of 
correctly classified data points out of the total number 
of data points in the testing dataset. A high accuracy 
value suggests that the model makes predictions on 
unseen data, demonstrating its ability to generalize 
well. Overall, the CNN model demonstrates high 
accuracy and low loss on both the training and testing 
datasets, indicating its effectiveness in making accurate 
predictions.
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Fig. 4. Accuracy and Loss values of the trained model on the training,  
validation and testing dataset

Table 1 represents the CNN-based model’s desired 
output and predicted output for different distributions: 
Normal, Uniform, Exponential, Log-Normal, and Beta. 
From the table, it is observed that for the desired output 
of 1 (indicating a normal distribution), the predicted 
outputs are relatively high, ranging from 0.993 to 
0.952. This suggests the model correctly identifies data 
points in the normal distribution with high confidence. 
Similarly, for the desired output of 1 (indicating 
an exponential distribution, log-normal and beta 
distribution), the predicted outputs are relatively high, 
close to 1 (0.994, 0.986 and 0.828, respectively). This 
suggests that the model correctly identifies data points 
of these distributions with high confidence. Overall, the 
model performs well in identifying the different types 
of distributions, with high confidence in the cases.

While the model demonstrates proficiency, it’s 
essential to acknowledge that real-world datasets often 
exhibit characteristics of mixture models, emphasizing 
the need for nuanced approaches in subsequent 

Table 1. Samples of the desired and predicted output values corresponding to the unseen data points

S.No. Output type Normal 
Distribution

Uniform 
Distribution

Exponential 
Distribution

Log-Normal 
Distribution Beta Distribution

1 Desired output 1 0 0 0 0

Predicted output 0.993 <0.001 <0.001 <0.001 <0.001

2 Desired output 0 0 1 0 0

Predicted output <0.001 <0.001 0.994 <0.001 <0.001

3 Desired output 1 0 0 0 0

Predicted output 0.952 <0.001 <0.001 <0.001 <0.001

4 Desired output 0 0 0 0 1

Predicted output <0.001 <0.001 <0.001 <0.001 0.828

5 Desired output 0 0 0 1 0

Predicted output <0.001 <0.001 <0.001 0.986 <0.001

research endeavours. The future scope of this research 
includes exploring the application of more complex 
neural network architectures to enhance classification 
accuracy. Additionally, integrating techniques for 
handling mixed distributions could improve the 
model’s performance in real-world scenarios. Further 
investigations could also expand the study to encompass 
a broader range of distribution types and dataset sizes 
for comprehensive analysis.

4. DISCUSSION
In the presented study, the preprocessing step 

(scaling and sorting of the data points) has played a vital 
role in the classification process. Scaling the data points 
to a uniform range (between 0 and 1) prevents certain 
features from dominating the learning process merely 
due to their scale, thereby improving the stability and 
convergence of the model during training. Moreover, 
scaling the data points helps mitigate the effects of 
varying magnitudes and units among different features, 
making the optimization process more efficient. This, 
in turn, can lead to improved model performance, faster 
convergence, and better generalization to unseen data.

In addition, sorting the data points further enhances 
the training process; when the data points are sorted, 
similar patterns and relationships are grouped together, 
allowing the model to learn more effectively from 
the sequential structure of the data. This can result in 
faster convergence and more accurate classification of 
different distributions. Furthermore, sorting the data 
points can also help reduce overfitting by exposing 
the model to a more structured data representation. 
By presenting the data in a sorted order, the model is 
less likely to memorize noise or irrelevant patterns and 
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instead focuses on learning the underlying distributional 
characteristics.

The performance analysis of the developed CNN-
based model over multiple epochs reveals notable trends. 
Initially, the model shows high loss and low accuracy, 
but as training progresses, both metrics improve 
steadily. The convergence of loss and stabilization 
of accuracy indicates the model’s ability to make 
accurate predictions on the training dataset. Evaluation 
of the validation dataset further confirms the model’s 
performance, with gradual improvements observed 
over epochs. Moreover, the performance metrics on 
different datasets—training, validation, and testing—
demonstrate the model’s effectiveness in making 
accurate predictions. The high accuracy and low loss 
values on both training and testing datasets underscore 
the model’s robustness and ability to generalize well 
to unseen data. Additionally, the model’s proficiency 
in identifying various distributions, as evidenced by 
the desired and predicted output values, showcases its 
capabilities in distribution classification tasks.

In our study, the 1D CNN-based model was 
deemed a better fit for several reasons. The input data 
represented sequential information, where each data 
point had a linear relationship with its neighbouring 
points. A 1D CNN is well-suited for processing 
sequential data, making it an appropriate choice for our 
dataset. Moreover, the 1D convolutional layer in the 
CNN model performs feature extraction by convolving 
filters over the input sequence. This capability allows 
the model to capture patterns and relationships within 
the data, which is crucial for identifying different 
distributions. Compared to Recurrent Neural Networks 
[16] or Long Short-Term Memory networks [17], 1D 
CNNs typically have fewer parameters, making them 
computationally efficient. This efficiency is beneficial 
for training on large datasets and allows for faster 
experimentation and model iteration.

Although the proposed method demonstrates 
effectiveness on synthetic datasets, it may face 
challenges in generalizing to real-world data, which 
often contain noise, outliers, and more complex 
structures. Therefore, the authors intend to validate 
the proposed methodology on real-world data in future 
studies. Additionally, the study’s focus on five specific 
distributions limits the model’s ability to accurately 
classify data points from other, untrained distributions.

In conclusion, while our study demonstrates the 
effectiveness of CNN-based models for distribution 
classification tasks, future research should explore 
more complex neural network architectures and 
techniques for handling mixed distributions to 
enhance model performance in real-world scenarios. 
Expanding the study to encompass a broader range of 
distribution types and dataset sizes could provide more 
comprehensive insights into distribution identification 
across diverse domains.

5. CONCLUSION
In various domains, there is a pressing need 

for faster methods of identifying data distributions 
to enable timely decision-making and enhance 
operational efficiency. Traditional approaches to data 
distribution identification are often time-consuming 
and labour-intensive, hindering real-time analysis and 
decision-making processes in various domains. In 
this direction, the study aimed to develop a DL-based 
model for classifying the distribution of data points. 
The study offers novel insights by employing the DL 
algorithm to classify data distributions, addressing the 
need for automated and efficient identification methods 
across various domains. Additionally, it introduces a 
comprehensive approach that combines data generation, 
preprocessing, model development, and evaluation to 
accurately classify different distribution types. Through 
the generation of synthetic data points and training of 
the CNN model, the study evaluates the performance 
of the classification algorithm in identifying different 
distribution types (Normal, Uniform, Exponential, 
Log-normal, and Beta distribution). Overall, the results 
demonstrated that the DL-based approach showed 
promising results in classifying the distribution of data 
points accurately. The model achieved high accuracy 
on both training and validation datasets, indicating its 
ability to generalize well to unseen data. The study 
highlights the potential of using ML/DL techniques 
for automated distribution identification tasks, which 
can have significant applications in various domains 
such as finance, manufacturing, and research. Further 
research could focus on refining the model architecture, 
exploring additional features, and testing the model 
on larger and more diverse datasets to enhance its 
performance and applicability.
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