
1. INTRODUCTION
Distribution identification is indispensable across

domains such as finance, healthcare, manufacturing,
and more. In finance, understanding data distributions
aids in risk assessment, portfolio management, and
financial modelling [1, 11]. It facilitates disease
diagnosis, treatment optimization, and epidemiological
studies in healthcare [2, 12]. Furthermore, it optimizes
production processes, ensures product quality, and
minimizes downtime in manufacturing [3]. Across all
domains, accurate distribution identification underpins
informed decision-making, process optimization, and
performance enhancement.

Understanding the data distribution helps identify
underlying patterns by revealing the frequency and
distribution of different values within the dataset. This
understanding enables analysts to recognize trends,

correlations, and relationships between variables.
Identifying anomalies becomes easier when the expected
data distribution is known, as any deviations from this
distribution can signal potential errors, outliers, or
unusual events. Moreover, optimizing processes relies
on understanding the data distribution to identify areas
for improvement, streamline operations, and enhance
efficiency. Making informed decisions also benefits
from knowledge of the data distribution, as it provides
context for interpreting results, evaluating risks, and
selecting appropriate strategies based on the dataset’s
characteristics.

The traditional approach to identifying data
distribution involves statistical methods such as
histograms, box plots and more. Analysts manually
inspect data visualizations and perform hypothesis
tests such as the Kolmogorov-Smirnov or Shapiro-

DDC: Deep Distribution Classifier, A Convolutional Neural
Network-based Approach for Identifying Data Distributions

Samarth Godara, Avinash G, Rajender Parsad and Sudeep Marwaha
ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Received 19 May 2024; Revised 23 July 2024; Accepted 02 August 2024

SUMMARY
In domains such as the stock market and manufacturing, there’s a growing demand for faster and more accurate data distribution identification methods
due to the rapid generation of vast volumes of data, highlighting the need for enhanced real-time decision-making capabilities. Traditional methods
of identifying data distributions often rely on manual inspection, limited statistical tests and time-consuming analysis, leading to inefficiencies and
inaccuracies in classification. In this scenario, the presented research offers a novel approach leveraging Deep Learning (DL) models to automate the
process. The presented methodology also enables faster and more accurate identification of data distributions by the generation of synthetic data points
and training of the DL model for identifying different distribution types. The primary objective of this study is to develop a DL model that categorizes
data points into specific distributions based on an input dataset. Moreover, for model training and evaluation, a total of 1000 datasets are generated,
each comprising 1000 data points. The study considers five distributions (Normal, Uniform, Exponential, Log-normal and Beta distribution), with
200 datasets generated (with randomly selected parameters) for each distribution. In the study, the DL model is trained first, and later, the model is
evaluated on a separate test (unseen) dataset. Then, its performance in classifying the distributions is assessed based on metrics such as accuracy
and loss. The study results demonstrate the effectiveness of the proposed approach in accurately classifying the distribution of data points, providing
valuable insights into the application of DL for distribution classification tasks. The proposed method enhances scalability, robustness and efficiency
by harnessing the power of convolutional neural networks and advanced preprocessing techniques.

Keywords: Distribution identification; Deep learning; Data distribution classification; Convolutional neural networks; Fast distribution detection.

Corresponding author: Samarth Godara
E-mail address: samarth.godara@icar.gov.in

https://doi.org/10.56093/JISAS.V78I2.11
Available online at http://isas.org.in/isa/jisas
JOURNAL OF THE INDIAN SOCIETY OF

AGRICULTURAL STATISTICS 78(2) 2024 169–178

170 Samarth Godara et al. / Journal of the Indian Society of Agricultural Statistics 78(2) 2024 169–178

Wilk tests. This method relies on assumptions about
the underlying distribution and may require multiple
iterations to determine the best-fitting distribution [4].
However, it can be time-consuming and subjective, and
complex patterns in the data may need to be captured
more effectively. Moreover, the traditional method of
distribution identification relies on assumptions about
the underlying distribution, which may only sometimes
hold true in real-world datasets. Manual inspection of
data visualizations and statistical tests can be time-
consuming and subjective, leading to potential biases
and inaccuracies. Overall, these issues highlight the
need for more efficient and automated approaches to
distribution identification.

Moreover, there is a pressing demand for alternative
methods in data distribution identification that offer
both speed and accuracy. This need arises particularly
in domains like the stock market and manufacturing
plants, where vast volumes of data are generated
rapidly. Traditional methods often fall short in handling
the sheer scale and velocity of data production in these
domains. As a result, there is a growing urgency to
develop faster and more precise techniques to identify
data distributions, enabling real-time decision-making
and optimization processes in these critical sectors.

In this scenario, Machine Learning and Deep
Learning (ML/DL) emerge as one potential solution.
ML/DL models are increasingly utilized for
classification tasks across diverse domains due to
their ability to learn complex patterns from data. In
healthcare, these models aid in disease diagnosis,
medical image analysis, and personalized treatment
recommendations [5]. In finance, they enable fraud
detection, credit risk assessment, and algorithmic
trading strategies [6]. In manufacturing, they optimize
quality control processes, predictive maintenance, and
supply chain management [7]. Across domains, ML/DL
models empower automated decision-making, enhance
efficiency, and drive innovation.

Generally, multi-class classification refers to an
ML/DL task that aims to classify input data points
into one of several predefined classes or categories. In
this task, each data point can belong to only one class
out of multiple possible classes. Inputs to a multi-
class classification task typically consist of features
or attributes that describe the characteristics of the
data points. These features could be numerical values,
categorical variables, or even more complex data

structures like images or text. The output of a multi-
class classification task is the predicted class label for
each input data point. The model assigns a probability
distribution over all possible classes, and the class with
the highest probability is considered the predicted class
for that data point. The output is often represented as a
vector of probabilities, where each element corresponds
to the probability of the corresponding class.

The proposed approach leverages ML/DL models
to automate the classification of data distributions. By
preprocessing data points, scaling them to a uniform
range and employing Convolutional Neural Networks
(CNNs) followed by densely connected layers, the
model aims to accurately identify the underlying
distribution among common options such as normal,
uniform, exponential, log-normal and beta distributions.
This automated approach offers scalability, efficiency
and robustness, addressing the limitations of traditional
manual methods and providing valuable insights across
various industries.

The selection of only five distributions provides
a diverse yet manageable set of common statistical
distributions, ensuring the model is trained on
a representative sample of distribution types. If
researchers wish to expand the classification task,
they must incorporate additional distributions and
their respective synthetic datasets into the training
process, potentially adjusting the model architecture
to handle increased complexity. Conversely, reducing
the classification task would involve excluding some
distributions and retraining the model to ensure it
maintains high accuracy with fewer classes, potentially
simplifying the model’s architecture.

The novel contributions of this research work
include:

● Proposing an automated approach for
identifying data distributions using ML/DL
models.

● Implementing convolutional neural networks
(CNNs) followed by densely connected layers
for efficient and accurate classification of data
distributions.

● Introduces a preprocessing step to scale data
points to a uniform range and employs sorting
techniques to enhance classification accuracy.

● Demonstrating the effectiveness of the
proposed approach in overcoming limitations
of traditional manual methods, providing

171Samarth Godara et al. / Journal of the Indian Society of Agricultural Statistics 78(2) 2024 169–178

scalable and robust solutions for distribution
identification across diverse domains.

In the current scenario, the challenges faced
by current researchers in performing the task of
identifying data distributions include the absence of
a framework guiding data preparation to aid ML/DL
models in predicting data distribution. Additionally,
there’s a lack of systems to train ML/DL models for
distribution classification and generate data points for
model development encompassing training, validation,
and testing phases. These challenges were addressed
by proposing an automated approach, introducing
preprocessing steps, implementing CNNs followed
by densely connected layers, and demonstrating the
approach’s effectiveness in overcoming the limitations
of traditional manual methods.

2. METHODOLOGY
The proposed methodology automates the process

of generating synthetic data points, performing
distribution tests, preprocessing the data, training a
neural network model, and evaluating its performance
for the classification of data distributions. The whole
study can be divided into two parts, i.e., the Data
Preparation stage and the Model Development and
Evaluation stage (Fig. 1).

Fig. 1. Methodology undertaken to develop the proposed Deep
Distribution Classifier (DDC)

1. Data preparation
a. Data Generation: In the data preparation stage

of the study, several steps are undertaken
to generate synthetic data points, perform
distribution tests, and preprocess the data for
training the neural network model. Initially,
the process begins with data generation,
where empty lists are initialized to store input
data points and corresponding p-values for
distribution tests, respectively. The number

of desired generations is set to 1000 (overall,
1000 datasets are generated in the simulation,
where each dataset contains 1000 values,
which belong to either one of the undertaken
distributions). Moreover, a counter is initialized
to track the number of generated data points.
Within a loop, data points are generated for
each distribution type (normal, exponential,
uniform, log-normal, beta) using random
parameters sampled from specified ranges
[8, 13-15]. Description of the distributions
undertaken in the presented study is as follows:

I. A normal distribution, also known as Gaussian
distribution, is a symmetric probability
distribution where data is symmetrically
distributed around the mean. Its formula is
given by eq. (1).

 (1)

 where, represents the mean and represents
the standard deviation. In general, the mean
can range from negative infinity to positive
infinity, covering all real numbers. The standard
deviation must be a non-negative real number,
so its range typically starts from zero and
extends to positive infinity.

II. The exponential distribution describes the time
between events in a Poisson process, where
events occur continuously and independently
at a constant average rate over time. Its
probability density function (PDF) is given by
eq. (2).

 (2)
 where, is the time, and is the rate parameter.

Its range is limited to positive real numbers, as
it dictates the rate at which events occur over
time.

III. The uniform distribution represents outcomes
where each value within a given range has
equal probability. Its PDF is defined as given
in eq. (3).

 (3)

 where, and are the lower and upper bounds
of the range, respectively. Where and are
real numbers and .

IV. The log-normal distribution is characterized
by data whose logarithms follow a normal

172 Samarth Godara et al. / Journal of the Indian Society of Agricultural Statistics 78(2) 2024 169–178

distribution, often representing skewed data.
Its PDF is defined as given in eq. (4).

 (4)

 where, is the mean and is the standard
deviation of the logarithm of the variable .
Here can take any real value, and must be
greater than 0.

V. The beta distribution represents the variability
of probabilities over a fixed interval, commonly
used for modelling proportions or rates. Its
PDF is defined as given in eq. (5).

 (5)

 where, and are shape parameters, and
 is the beta function. Both and must

be positive real numbers greater than zero.
 For each distribution type, the computer

program invokes the `generate_test_values`
function to perform distribution tests and obtain
p-values. If the p-value exceeds the threshold
of 0.05, indicating a valid distribution, the
data points and corresponding p-values are
appended to the dataset. This process iterates
until the desired number of valid data points is
generated.

 In our study, random selection of population
distribution parameters refers to the process
of selecting parameters such as scale, location,
shape and rate for each distribution from
predefined ranges of (0-2), (0-1), (1-2), and (0-
1), respectively. This randomness allows for the
generation of diverse data points representing
various distributions. For instance, in the
normal distribution, a random selection of
mean (location) and standard deviation
(scale) produces data points with different
central tendencies and spreads. Similarly, in
the uniform distribution, random selection
of minimum and maximum values (location
and scale) generates data points uniformly
distributed within the specified range. This
approach ensures that each distribution is
represented by a wide range of data points,
enhancing the model’s ability to effectively
learn and classify different distribution
patterns.

b. In the data generation process, the `generate_test_
values` function is crucial in conducting distribution
tests for the generated data points. It takes the data
points along with parameters such as scale, loc, a,
and b as inputs. A dictionary inside the function is
initialized to store p-values obtained from different
distribution tests. Necessary functions from `scipy.
stats` python library are imported to perform tests
for normal, uniform, exponential, log-normal,
and beta distributions. For each distribution, the
function executes the respective test and stores
the resulting p-value in the dictionary. Finally, the
function returns the dictionary containing p-values
for each distribution test.

c. Preprocessing and Scaling: Following data
generation and distribution testing, the data
undergoes preprocessing and scaling to prepare
it for training the neural network model. The
input data points are scaled from 0 to 1 using
the `MinMaxScaler`, a preprocessing technique
commonly employed in machine learning tasks.
The equation for Min-Max scaling to scale data
between 0 and 1 is given by eq. (6).

 (6)

 Where, is the scaled value, is the original
value, is the minimum value in the dataset
and is the maximum value in the dataset.
Subsequently, the scaled data points are sorted to
ensure uniformity and consistency in the input
data. This preprocessing step is crucial as it
standardizes the input data and enhances the
convergence and performance of the neural
network model during training. Overall, the data
preparation stage lays the foundation for subsequent
model training and evaluation by generating
synthetic data, conducting distribution tests, and
preparing the data for machine learning algorithms.
After scaling the data points, the values are sorted
in ascending order. Sorting is used as a preprocessing
step to standardize the input data, making patterns
within different distributions more apparent to the
deep learning model. By arranging data points in a
specific order, the inherent characteristics of each
distribution become more distinguishable, aiding
the model in learning and identifying distribution-
specific features more effectively. This step
enhances the model’s ability to discern subtle

173Samarth Godara et al. / Journal of the Indian Society of Agricultural Statistics 78(2) 2024 169–178

differences between distributions, thereby
improving classification accuracy and robustness.

2. Model Development and Evaluation Stage
a. Data splitting and Model building: In this step, the

data is split into training, validation, and testing
sets, a common practice in ML/DL that assesses
model performance on unseen data. The training
dataset is used to train the model’s parameters, the
validation dataset is used to tune hyperparameters
and prevent overfitting, and the testing dataset
is used to evaluate the model’s performance on
unseen data. In our study, a ratio of 80:10:10 was
used for training, validation, and testing datasets,
respectively, to ensure adequate model training,
tuning, and evaluation while maintaining a balance
between dataset sizes.

 Subsequently, a convolutional neural network
(CNN) model is defined, which allows for the
sequential stacking of layers. The architecture of
the CNN model comprises a convolutional layer,
a max-pooling layer to downsample feature maps,
a flattening layer to convert the multidimensional
data into a vector, densely connected layers to
perform classification, and a softmax output
layer for multi-class classification [9]. The CNN
model utilized in the study is designed for feature
extraction and hierarchical learning from input
data. Its core equation involves convolving input
data with learnable filters, followed by activation
functions and pooling operations to extract relevant
features. This process is represented in eq. (7).

 (7)
 Where, represents the output of the convolution

operation at layer , denotes the learnable filters
(also called kernels) specific to layer , is the
activation map from the previous layer, ,
is the bias term associated with the convolutional
layer and denotes the convolution operation,
where the filter is applied to the input data.

b. Model Training: Following the model architecture
definition, the model is compiled using the
Adam optimizer and categorical cross-entropy
loss function, which is suitable for multi-class
classification tasks. With the compiled model,
training commences on the training data for a
specified number of epochs, in this case, 100
epochs. During training, the model learns to map

input data to their corresponding output classes,
iteratively adjusting its parameters to minimize the
loss function. Here, backpropagation is a crucial
algorithm used to train the compiled CNN model.
It calculates the gradient of the loss function with
respect to the network weights, enabling weight
updates to minimize the error. The algorithm
operates in two phases: the forward pass, where
inputs are fed through the network to make
predictions, and the backward pass, where errors
are propagated backwards through the network
to update the weights. The formula for updating
weights using backpropagation is given by eq. (8).

 (8)

 Where, is the change in weight between
neuron and neuron , is the learning rate, is
the partial derivative of the error with respect to the
weight .

 An activation function in a neural network defines
the output of a neuron given an input or set of
inputs. It introduces non-linearity into the model,
allowing it to learn complex patterns and make
accurate predictions. The model undertaken in the
study uses two widely used activation function,
i.e. ReLU activation function and the softmax
activation function.

 The ReLU (Rectified Linear Unit) activation
function is defined as . It
outputs the input directly if it is positive; otherwise,
it outputs zero, aiding in faster and more effective
training by mitigating the vanishing gradient
problem. The softmax activation function is defined
as given in eq. (9).

 (9)

 It converts a vector of raw scores into probabilities,
with each value ranging between 0 and 1, and their
sum equal to 1, making it suitable for multi-class
classification tasks.

c. Model Evaluation: After training, the model’s
performance is evaluated on the unseen test data,
which computes the loss and accuracy metrics.
These metrics provide insights into how well
the model generalizes to new, unseen data. The
obtained loss and accuracy metrics are displayed

174 Samarth Godara et al. / Journal of the Indian Society of Agricultural Statistics 78(2) 2024 169–178

to quantitatively assess the model’s performance.
In multi-class classification CNN models, the loss
metric commonly used is categorical crossentropy,
which calculates the difference between predicted
and actual class probabilities across all classes
[10]. Its formula is given by eq. (10).

 (10)

 Here, is the number of samples, is the number
of classes, is the indicator function (1 if sample
 belongs to class , 0 otherwise), and is the

predicted probability of sample belonging to class
. Moreover, accuracy is a common metric used to

evaluate model performance, representing the
proportion of correctly classified samples out of the
total samples. Its formula is given by eq. (11).

 (11)

 For further validation and demonstration purposes,
the code predicts the output for the first 5 test
samples using the trained model and prints both
the true and predicted values. This step allows for
a qualitative assessment of the model’s predictive
capabilities.

d. Model Storage: Lastly, to ensure the model’s
reusability and accessibility, it is saved to a file. This
enables easy retrieval and utilization of the trained
model for future tasks without retraining it from
scratch. Additionally, there is also the functionality
to load the saved model back into memory,
facilitating seamless integration into other projects
or applications. Overall, these steps encompass the
model development, evaluation, and management
processes, ensuring the robustness and usability of
the trained neural network model.

3. RESULTS AND DISCUSSION
The architecture of the model developed in the

study consists of a sequential stack of layers (Fig.
2). The initial layer is a 1-dimensional convolutional
layer with 64 filters, a kernel size of 3, and ReLU
activation function. It takes input data of shape (1000,
1), where 1000 represents the number of data points
and 1 represents the number of features. Following
the convolutional layer is a max-pooling layer with a

pool size of 2, which reduces the spatial dimensions of
the input. The output of the pooling layer is flattened
into a one-dimensional array using the `Flatten` layer.
Then, two densely connected layers are added, the first
with 32 units and ReLU activation function, and the
second with 5 units and softmax activation function,
representing the output classes. The model is compiled
using the Adam optimizer, categorical cross-entropy
loss function, and accuracy metric for evaluation.

Fig. 2. Architectural details of the developed CNN-based Distribution
Classification Model

Fig. 3 represents the performance metrics of the
CNN-based model trained on a dataset over multiple
epochs. The X-axis corresponds to a specific epoch
during the training process, and the y-axis presents the
loss and accuracy values achieved by the model on the
training dataset at each epoch. From the figure, it is
observed that, initially, at epoch 10, the model has a
relatively high loss value of 1.2468 and a low accuracy
of 0.3827, indicating poor performance. However,
as training progresses, the loss steadily decreases,
reaching significantly lower values by epoch 50 (0.056)
and continuing to decrease thereafter. Similarly, the
model’s accuracy improves over time, starting from
0.3827 at epoch 10 and reaching a high of 0.9988 by
epoch 60. Towards the end of training, the loss plateaus,
indicating that the model has converged to a stable state
where further training may not significantly improve
performance. Similarly, the accuracy also stabilizes,
indicating that the model has learned to classify the
training data accurately.

The figure also presents the performance metrics
evaluated on a validation dataset across different
epochs during the training process. From the figure, it
is observed that at the beginning of training (epoch 10),
the model’s loss is relatively high (0.7236), indicating
that the model’s predictions deviate significantly
from the actual values. However, the accuracy is

175Samarth Godara et al. / Journal of the Indian Society of Agricultural Statistics 78(2) 2024 169–178

moderate (0.6222), indicating that a substantial
portion of the data points is correctly classified. As
training progresses, both loss and accuracy improve.
By epoch 30, the loss decreases to 0.2587, indicating
better model performance in minimizing prediction
errors. Additionally, the accuracy increases to 0.9444,
indicating that a higher proportion of data points is
correctly classified. Beyond epoch 30, the loss decreases
gradually, reaching its lowest value at epoch 90
(0.1384), indicating further improvement in predictive
accuracy. However, there is a slight fluctuation in loss
and accuracy values in later epochs, suggesting some
instability in the model’s performance. Overall, the
validation dataset’s loss decreases over epochs while
accuracy remains relatively stable, indicating that
the model is improving its ability to make accurate
predictions. The consistency in accuracy values
suggests that the model’s performance is robust and
generalizes well to unseen data.

Fig. 4 presents the performance metrics of a trained
CNN-based model on three different datasets: training,
validation, and testing. From the figure, it is observed
that the loss on the training dataset is 0.0127, which
indicates the average discrepancy between the model’s
predictions and the actual values in the training dataset.

Fig. 3. The Accuracy and Loss across the 100 epochs employed for training the model

The accuracy on the training dataset is 0.9975, indicating
the proportion of correctly classified data points out of
the total number of data points in the training dataset.
A high accuracy value indicates that the model makes
accurate predictions on the training data. The loss on
the validation dataset is 0.143, with the accuracy on
the validation dataset being 0.9444, indicating the
proportion of correctly classified data points out of the
total number of data points in the validation dataset. A
high accuracy value indicates that the model performs
well on the validation data, although it may not be as
high as the training accuracy.

The loss on the testing dataset is 0.0551; the
loss value is intermediate between the training and
validation losses, indicating that the model performs
reasonably well on unseen data. The accuracy on the
testing dataset is 0.9901, indicating the proportion of
correctly classified data points out of the total number
of data points in the testing dataset. A high accuracy
value suggests that the model makes predictions on
unseen data, demonstrating its ability to generalize
well. Overall, the CNN model demonstrates high
accuracy and low loss on both the training and testing
datasets, indicating its effectiveness in making accurate
predictions.

176 Samarth Godara et al. / Journal of the Indian Society of Agricultural Statistics 78(2) 2024 169–178

Fig. 4. Accuracy and Loss values of the trained model on the training,
validation and testing dataset

Table 1 represents the CNN-based model’s desired
output and predicted output for different distributions:
Normal, Uniform, Exponential, Log-Normal, and Beta.
From the table, it is observed that for the desired output
of 1 (indicating a normal distribution), the predicted
outputs are relatively high, ranging from 0.993 to
0.952. This suggests the model correctly identifies data
points in the normal distribution with high confidence.
Similarly, for the desired output of 1 (indicating
an exponential distribution, log-normal and beta
distribution), the predicted outputs are relatively high,
close to 1 (0.994, 0.986 and 0.828, respectively). This
suggests that the model correctly identifies data points
of these distributions with high confidence. Overall, the
model performs well in identifying the different types
of distributions, with high confidence in the cases.

While the model demonstrates proficiency, it’s
essential to acknowledge that real-world datasets often
exhibit characteristics of mixture models, emphasizing
the need for nuanced approaches in subsequent

Table 1. Samples of the desired and predicted output values corresponding to the unseen data points

S.No. Output type Normal
Distribution

Uniform
Distribution

Exponential
Distribution

Log-Normal
Distribution Beta Distribution

1 Desired output 1 0 0 0 0

Predicted output 0.993 <0.001 <0.001 <0.001 <0.001

2 Desired output 0 0 1 0 0

Predicted output <0.001 <0.001 0.994 <0.001 <0.001

3 Desired output 1 0 0 0 0

Predicted output 0.952 <0.001 <0.001 <0.001 <0.001

4 Desired output 0 0 0 0 1

Predicted output <0.001 <0.001 <0.001 <0.001 0.828

5 Desired output 0 0 0 1 0

Predicted output <0.001 <0.001 <0.001 0.986 <0.001

research endeavours. The future scope of this research
includes exploring the application of more complex
neural network architectures to enhance classification
accuracy. Additionally, integrating techniques for
handling mixed distributions could improve the
model’s performance in real-world scenarios. Further
investigations could also expand the study to encompass
a broader range of distribution types and dataset sizes
for comprehensive analysis.

4. DISCUSSION
In the presented study, the preprocessing step

(scaling and sorting of the data points) has played a vital
role in the classification process. Scaling the data points
to a uniform range (between 0 and 1) prevents certain
features from dominating the learning process merely
due to their scale, thereby improving the stability and
convergence of the model during training. Moreover,
scaling the data points helps mitigate the effects of
varying magnitudes and units among different features,
making the optimization process more efficient. This,
in turn, can lead to improved model performance, faster
convergence, and better generalization to unseen data.

In addition, sorting the data points further enhances
the training process; when the data points are sorted,
similar patterns and relationships are grouped together,
allowing the model to learn more effectively from
the sequential structure of the data. This can result in
faster convergence and more accurate classification of
different distributions. Furthermore, sorting the data
points can also help reduce overfitting by exposing
the model to a more structured data representation.
By presenting the data in a sorted order, the model is
less likely to memorize noise or irrelevant patterns and

177Samarth Godara et al. / Journal of the Indian Society of Agricultural Statistics 78(2) 2024 169–178

instead focuses on learning the underlying distributional
characteristics.

The performance analysis of the developed CNN-
based model over multiple epochs reveals notable trends.
Initially, the model shows high loss and low accuracy,
but as training progresses, both metrics improve
steadily. The convergence of loss and stabilization
of accuracy indicates the model’s ability to make
accurate predictions on the training dataset. Evaluation
of the validation dataset further confirms the model’s
performance, with gradual improvements observed
over epochs. Moreover, the performance metrics on
different datasets—training, validation, and testing—
demonstrate the model’s effectiveness in making
accurate predictions. The high accuracy and low loss
values on both training and testing datasets underscore
the model’s robustness and ability to generalize well
to unseen data. Additionally, the model’s proficiency
in identifying various distributions, as evidenced by
the desired and predicted output values, showcases its
capabilities in distribution classification tasks.

In our study, the 1D CNN-based model was
deemed a better fit for several reasons. The input data
represented sequential information, where each data
point had a linear relationship with its neighbouring
points. A 1D CNN is well-suited for processing
sequential data, making it an appropriate choice for our
dataset. Moreover, the 1D convolutional layer in the
CNN model performs feature extraction by convolving
filters over the input sequence. This capability allows
the model to capture patterns and relationships within
the data, which is crucial for identifying different
distributions. Compared to Recurrent Neural Networks
[16] or Long Short-Term Memory networks [17], 1D
CNNs typically have fewer parameters, making them
computationally efficient. This efficiency is beneficial
for training on large datasets and allows for faster
experimentation and model iteration.

Although the proposed method demonstrates
effectiveness on synthetic datasets, it may face
challenges in generalizing to real-world data, which
often contain noise, outliers, and more complex
structures. Therefore, the authors intend to validate
the proposed methodology on real-world data in future
studies. Additionally, the study’s focus on five specific
distributions limits the model’s ability to accurately
classify data points from other, untrained distributions.

In conclusion, while our study demonstrates the
effectiveness of CNN-based models for distribution
classification tasks, future research should explore
more complex neural network architectures and
techniques for handling mixed distributions to
enhance model performance in real-world scenarios.
Expanding the study to encompass a broader range of
distribution types and dataset sizes could provide more
comprehensive insights into distribution identification
across diverse domains.

5. CONCLUSION
In various domains, there is a pressing need

for faster methods of identifying data distributions
to enable timely decision-making and enhance
operational efficiency. Traditional approaches to data
distribution identification are often time-consuming
and labour-intensive, hindering real-time analysis and
decision-making processes in various domains. In
this direction, the study aimed to develop a DL-based
model for classifying the distribution of data points.
The study offers novel insights by employing the DL
algorithm to classify data distributions, addressing the
need for automated and efficient identification methods
across various domains. Additionally, it introduces a
comprehensive approach that combines data generation,
preprocessing, model development, and evaluation to
accurately classify different distribution types. Through
the generation of synthetic data points and training of
the CNN model, the study evaluates the performance
of the classification algorithm in identifying different
distribution types (Normal, Uniform, Exponential,
Log-normal, and Beta distribution). Overall, the results
demonstrated that the DL-based approach showed
promising results in classifying the distribution of data
points accurately. The model achieved high accuracy
on both training and validation datasets, indicating its
ability to generalize well to unseen data. The study
highlights the potential of using ML/DL techniques
for automated distribution identification tasks, which
can have significant applications in various domains
such as finance, manufacturing, and research. Further
research could focus on refining the model architecture,
exploring additional features, and testing the model
on larger and more diverse datasets to enhance its
performance and applicability.

178 Samarth Godara et al. / Journal of the Indian Society of Agricultural Statistics 78(2) 2024 169–178

ACKNOWLEDGEMENTS
The authors are grateful to the reviewers for

significant improvement of the articles.

REFERENCES
AbouRizk, Simaan M., Daniel W. Halpin, and James R.(1994). Wilson.

“Fitting beta distributions based on sample data.” Journal of
Construction Engineering and Management 120, No. 2. 288-305.

Adcock, Christopher, Martin Eling, and Nicola Loperfido.(2015).
“Skewed distributions in finance and actuarial science: a review.”
The European Journal of Finance 21, no. 13-14. 1253-1281.

Aghdam, Hamed Habibi, and Elnaz Jahani Heravi.(2017). “Guide to
convolutional neural networks.” New York, NY: Springer 10, no.
978-973. 51.

Davis, Paula M.(2020). “Statistics for describing populations.” In
Handbook of sampling methods for arthropods in agriculture, pp.
33-54. CRC Press, 2020.

Fraile, Roberto, and Eduardo García-Ortega.(2005). “Fitting an
exponential distribution.” Journal of Applied Meteorology and
Climatology 44, No. 10. 1620-1625.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

Habehh, Hafsa, and Suril Gohel.(2021). “Machine learning in
healthcare.” Current genomics 22, No. 4: 291.

Huang, Jian, Junyi Chai, and Stella Cho.(2020. “Deep learning in
finance and banking: A literature review and classification.”
Frontiers of Business Research in China 14, No. 1 : 13.

Medsker, Larry R., and Lakhmi Jain.(2001). “Recurrent neural
networks.” Design and Applications 5, No. 64-67. 2.

Mohammed, Noman, Benjamin C.M. Fung, Patrick C.K. Hung,
and Cheuk-Kwong Lee.(2010). “Centralized and distributed
anonymization for high-dimensional healthcare data.” ACM
Transactions on Knowledge Discovery from Data (TKDD) 4, No.
4: 1-33.

Rai, Rahul, Manoj Kumar Tiwari, Dmitry Ivanov, and Alexandre
Dolgui.(2021). “Machine learning in manufacturing and industry
4.0 applications.” International Journal of Production Research
59, No. 16: 4773-4778.

Ramberg, John S., Edward J. Dudewicz, Pandu R. Tadikamalla, and
Edward F. Mykytka.(1979). “A probability distribution and its
uses in fitting data.” Technometrics 21, No. 2 : 201-214.

Stedinger, J.R.(1980). “Fitting log normal distributions to hydrologic
data.” Water Resources Research 16, No. 3: 481-490.

Thas, Olivier. Comparing distributions. Vol. 233. New York: Springer,
2010.

Vose, David.(2016). “Fitting distributions to data.” Retrieved March 8,
2016.

Wang, Junliang, Chuqiao Xu, Jie Zhang, and Ray Zhong.(2022). “Big
data analytics for intelligent manufacturing systems: A review.”
Journal of Manufacturing Systems 62, 738-752.

Yu, Yong, Xiaosheng Si, Changhua Hu, and Jianxun Zhang.(2019). “A
review of recurrent neural networks: LSTM cells and network
architectures.” Neural computation 31, No. 7 1235-1270.

