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SUMMARY

Optimal design of multi-response mixture experiments for estimating the parameters of multi-response linear models is
an interesting problem which is yet to be discussed in literature. In this paper, we present a formulation of optimal design for
multi-response linear models using Semi-Definite Programming (SDP) that can generate D-, A- and E-optimal designs. We
generate both approximate and n-exact D-optimal designs for multi-response linear models for multi-response mixture
experiments. The proposed method has an advantage as using it one can use SDP solver of TOMLAB (Holmstrom 2004) and
YALMIP (Lofberg 2005) software within MATLAB environment in order to minimize the amount of computation time needed

to generate an optimal design for multi-response models.
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1. INTRODUCTION

Applications of optimal design of mixture
experiments in different fields have been growing
continually. The optimal design of mixture experiments
has been frequently applied in microbiology (Gallego
et al. 2008), in medicines and drugs (Gonnissen et al.
2008), in food science (Ozdemir and Floros 2008) and
in many other areas of science. Draper and Hunter
(1966) introduced the techniques of multi-response
experiments with their work on the design of
experiments for parameter estimation of multi-response
model. Roy ef al. (1971) extended the classical design
to a multi-response experimental design. Fedorov
(1972) established a theoretical foundation for multi-
response experiments and also developed a recursive
algorithm for generating multi-response approximate
D-optimal designs. Chang (1994) studied the properties
of D-optimal designs for multi-response models. Khuri
and Cornell (1996) devoted a chapter of their book to
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multi-response experiments and described Wijesinha’s
algorithm (Wijesinha 1984) for generating D-optimal
designs. Chang (1997) proposed an algorithm which
generates nearly D-optimal designs for some special
multi-response linear models. So far a lot of work has
been done on optimal design for multi-response linear
models, but the same work on the literature of mixture
experiments has not drawn much and required attention.

In this paper, we propose a formulation for D-,
A- and E-optimal designs for multi-response models for
multi-response mixture experiments. We generate both
approximate and n-exact D-optimal designs for multi-
response models using FINDMAXIMUM solver of
MATHEMATIKA-6.0.

The organization of the rest of this paper is as
follows. Section 2 defines multi-response optimal
designs for multi-response mixture experiments. In
Section 3, we propose the formulation of multi-response
optimal designs. For illustrations, we have considered
three different models i.e. Scheffé’s canonical
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polynomial models (Scheffé 1958, 1963), models with
inverse terms (Draper and John 1977a) and K-models
for mixture experiments (Draper and Pukelsheim 1998),
and have presented the same in Section 4. The
advantages of proposed formulation are discussed in
Section 5. Section 6 draws some conclusions.

2. MULTI-RESPONSE OPTIMAL DESIGNS
FOR MULTI-RESPONSE MIXTURE
EXPERIMENTS

In mixture experiments, the measured response is
assumed to depend only on the relative proportions of
the components present in the mixture. As a result, the
factor space reduces to a (¢ — 1) — dimensional simplex

S, 15 see Scheffé (1958).

In many practical situations, it may be necessary
to measure more than one response for each of the
points of S, _ . Such experiments are known as multi-
response mixture experiments. The responses are often
correlated and thus may not be taken into account
separately. In other cases, the cost of experimenting and
collecting data using single response mixture
experiments makes one to cast the problem as a multi-
response mixture experiments.

A multi-response linear model for multi-response
mixture experiments can be defined as

y,= fB +¢ ; i=1,..,r; (1)

where f;(x) is a vector representing the model form;
X = (Xy, ..., X,) is a design point from S, _;; B, is a vector
of p, unknown parameters; and & is a random error
associated with the ith response and is correlated with
&. Assume that the error terms are normally distributed
with zero mean and the variance-covariance matrix of
the responses are denoted by 2.

In optimal design problem, the objective is to find
a set of design points so that the function of variance
of estimator is minimized. For this purpose we consider
approximate design (&) and n-exact design (&,); see
Atkinson and Donev (1992) and express the variance
of estimator as a function of design points and the
variance-covariance matrix of random errors. We define
the matrix F(x) for each design point x as

F’(x) = Diag(f{(x),..., f{i(x)),

denoting a » X p block-diagonal matrix, where

-

p= Zpl- . Then, we can write Var(f) based on n
i=1

selected observations from S,_, as follows

1
Var(f) = [ZF(xi)Z_lF'(xi)I .
i=1

We assume that £ can be estimated using a
consistent estimator like the one suggested by Zellner
(1962)

£ = Gy

L, =X (XX XN, - X (XX Xy

B

v n

Lj=1,...r

One could otherwise assume that the variance-
covariance matrix has some known structure such as

1
[ p],—lSpSl,
p 1

for a two response model and similarly for higher
dimension.

3. SDP FORMULATION OF MULTI-RESPONSE
OPTIMAL DESIGNS

The SDP model has been used in modeling diverse
application situations in engineering, statistics, finance
and global optimization (Boyd and Vandenberghe 2004,
Helmberg 2002). The success of SDP models in various
applications has motivated this research to formulate
and solve multi-response optimal designs for multi-
response mixture experiments as SDP problems.

An n-exact optimal design problem under the
conditions specified in Section 2 may be defined as an
optimization model as follows

i

-1
n
Minimize [ZF(xi)Z_lF'(xi)]
i i=1

subject to : x; € Sqfl, i=1,..,n, 2)
where ¥ is a real valued function over the space of

positive definite matrices. Given a set of K possible
design points denoted by vy, ..., Yx €S, _, it is desirable
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to choose the vector of number of observations
(ny, ..., ng) to be measured on the design points so that
the resulting design &, is maximally informative and »,
+ ... + ng = n. We can write function of general model
(2) as follows

n -1 K !
[ani)z—lF’(x,-)] =[2n,-F(y,~>z‘lF’<y,-)] :

i=1 J=1

Therefore, an n-exact optimal design can be
defined as the following optimization problem

-1
Minimize W [ZF(J’] )Z'F (J’,)]

n; j=1
subject to :n, + ... + ny = n,
n; 2 0, n;’s are integers. 3)

We call this problem as multi-response design of
multi-response mixture experiment.

Assuming that #;’s are small integers relative to
n, a good approximate design can be made by relaxing
the integrality constraints. Let 4, = n/n be the fraction
of the total number of observations to be measured at
point y;; we may then express the estimation variance
in terms of 4, as

-1
R K

Var (B) = %lzsz@ﬂle'@j)] :
j=1

The real vector 4 € R satisfies 1> 0, ¢'4 = 1,
and e represents vector of ones with the appropriate
size. Thus, by ignoring the constant factor 1/n, we have
the following model

‘j —

-1
K
Minimize [Z FHZF (y,)]

subjectto: e’A=1,42>0. 4)

We call this problem a relaxed multi-response
experimental design of mixture experiments and its
solution will be an approximate design.

Various real-valued functions () have been
suggested as design criteria (see for example
Pukelsheim 1993). Three commonly used criteria are

(1) D-optimality: A design is D-optimal if the

-1

K

determinant of [zﬂjF(yj)Z_lF'(J’j)] is
j=1

minimized.

(2) E-optimality: A design is E-optimal if it minimizes
the largest eigenvalue of

—1
K
[Z AF @ F(y p] :

j=1
(3) A-optimality: A design is A-optimal if it minimizes

Jj=1

-1
K
the trace of [leF(J’j)Z_lF'(J’j)] :

We construct the three commonly used optimal
design problems by choosing one of the above
mentioned forms of y as follows

3.1 Multi-response D-optimal Design

Multi-response D-optimal design problem is
constructed if y is defined to be logarithm of the
determinant of the estimation variance-covariance
matrix

-1
Mlnirmze logdet [Zl F(y])Z_lF (7; )]
j J 1

or equivalently,

Maximze logdet ﬂ:Zﬂ Fy)Hz b (7; )]}

j j= 1
subjectto : €A=1,A 2> 0. ®))

We have obtained the multi-response D-optimal
design using the maximization of the objective function

ie. Maxmnze logdet {[Zl F@) )Z'F’ (2; )”

j=1

3.2 Multi-response E-optimal Design

If y is taken as 1,-norm then the multi-response
E-optimal design model is constructed as

-1
K
Minimize [ZI%F(W)Z‘IF'(H)]
= 2
EA=1,120. (6)

subject to:
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This is a convex optimization problem since the
objective function is a convex function of A.

-1
K
The matrix norm [ZﬂjF(yj)Z_lF’(J’j)] is
j=1
2

equivalent to the largest eigenvalue of the matrix,

1
K
m.me[Zﬁprz*prI . We know that

Jj=1

Hrnin(A) = # and f(A) 21 & A > =11

ax

(Boyd and Vandenberghe 2004). Then, using these
relations the multi-response E-optimal design can be
defined in an SDP form as follows

Maximize t
At

K
subject to : ZAjF('Yj)Z_IF'(Yj) - =1
=1

EA=1,120. (7)
The sign > = indicates Lowner partial order.

3.3 Multi-response A-optimal Design

In multi-response A-optimal design problem we
minimize trace of the estimation variance-covariance
matrix. Then we can write optimization for A-optimal
design as

-1
K
Min/ilmize trace [ZﬂjF(}/j)Z_lF'(}/j)]
’ j=1

subject to: €'A=1,41>0. (8)

This is a convex optimization problem. We can
write the model (8) in an SDP form using the Schur
complement theorem as explained below.

S s the

rq> Pr

Let Ae S;r+,BeZq and Ce M

set of symmetric positive definite 7 X r matrices, Z, is
the set of symmetric ¢ X ¢ matrices and M, , is the set

of r X ¢ real matrices. Then
A
) Cly c0oBr-Cca'c
C B

(Helmberg 2002)

According to this theorem and linear algebra, we
can write

-1
K n
trace IZQJ-F('Y]')Z_IF’(Y,')] = Dt
i=1

Jj=1

= trace (Diag(u)),

K
SAFYHE'F(y,) 1
j=1

I Diag (u)

-1

K

& Diag (u) == I’[ZﬂjF('Yj)Z_IF'('Yj)] L
j=1

We can cast model (8) as an SDP model as follows

Minimize e’y

4> 1
S —lp
subject to: JzziljF(Yj)z Fy) ! = =0,
I Diag (u)
EA=1,120. 9)

We can similarly write the model for n-exact
design problems. We obtain optimum 4’s and »n,’s

according to approximate and n-exact designs using
FINDMAXIMUM solver of MATHEMATIKA-6.0. To

obtain optimum 4’s and n;’s we need to input the

following data

(1) The set of all possible design points y,’s.

(2) The variance-covariance matrix 2 which can be
estimated as explained in Section 2.

(3) The total number of observations (n) in case of
n-exact design.

4. ILLUSTRATIONS

In this section, applicability of the proposed
approach is investigated by three different examples.
The SDP models have been solved using Mathematika-
6.0.

Example 1 : Suppose ¢ =2 and » = 2. Let us consider
linear and quadratic Scheffé’s canonical polynomial
models i.e. suppose

fl'(x) = (1, x,)

and fz’(x) = (X, Xp, X1Xp).



Poonam Singh et al. / Journal of the Indian Society of Agricultural Statistics 65(1) 2011 91-98 95

Table 1. Multi-response D-optimal design for Scheffé’s
canonical polynomial models

x4 X, Af A
1 0 0.375 19
0 1 0.375 19
12 1/2 0.25 12
1/4 3/4 1.311e-8 0
3/4 1/4 1.311e-8 0

Let us assume that

z=[2 aq

04 1

and the 5 support points (design points) for the
saturated design are (1, 0), (0, 1), (1/2, 1/2), (1/4, 3/4)
and (3/4, 1/4). The design measure for an approximate
D-optimal design and the number of observations for
an n-exact D-optimal design (for n = 50) are given as
columns A” and A° respectively in Table 1. The values
of the objective function for the two designs are
—8.93067 and 6.71634 respectively.

We investigated the sensitivity of the D-optimal
design with respect to the variations in 2. In place of

2 04
3 =
LA 1]

z::[l p],pe(—hl)
p 1

we consider

By setting p=0, p=-0.1, p= 0.1, p=-0.4,
p =04, p=-09 and p = 0.9, we generate, design
measure for approximate D-optimal designs which are
given as columns AV 27 in Table 2.

Table 3 gives the variations obtained in the values
of objective function in the variance-covariance matrix.

Example 2 : Suppose ¢ =2 and » = 2. Let us consider
linear and quadratic K-models for mixture experiments
ie.

fx) = (x1, X2)

Table 2. The results of sensitivity analysis of D-optimal design due to variations in 2 for Scheffé’s canonical

polynomial models

X X A0 A A3 AW A A© A
| 0 0.375 0.375 0.375 0.375 0.375 0.375 0.375
0 1 0.375 0.375 0.375 0.375 0.375 0.375 0.375
1/2 1/2 0.250 0.250 0.25 0.250 0.250 0.250 0.250
1/4 3/4 1.311e-8 1.311e-8 1.311e-8 1.311e-8 1.311e-8 | 1.311e-8 | 1.311e-8
3/4 1/4 1.311e-8 1.311e-8 1.311e-8 1.311e-8 1.311e-8 | 1.311e-8 | 1.311e-8
Table 3. Variations of the objective values with respect to variations in
P 0 +0.1 +0.4 +0.9
Value of Objective function —7.79452 —7.76437 —7.27146 -2.81232

Table 4. Multi-response D-optimal design for K-models for mixture experiments

X X, A A
1 0 0.375 19
0 1 0.375 19
1/2 1/2 0.250 12
1/4 3/4 1.56208e-8
3/4 1/4 1.56208e-8
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Table 5. The results of sensitivity analysis of D-optimal design due to variations in 2 for K-models
for mixture experiments

X, X A 1@ YA yASY yAS) 1© YA
1 0 0.375 0.375 0.375 0.375 0.375 0.375 0.375
0 1 0.375 0.375 0.375 0.375 0.375 0.375 0.375
% % 0.250 0.250 0.250 0.250 0.250 0.250 0.250
% % 1.550e-7 1.551e-8 1.551e-8 1.576e-8 1.576e-8 2.271e-8 2.271e-8
% % 1.550e-7 1.551e-8 1.551e-8 1.576e-8 1.576e-8 2.271e-8 2.271e-8
Table 6. Variations of the objective values with respect to variations in £
p 0 +0.1 +04 +09
Objective function value —6.40822 —6.37807 —5.88516 —1.42603

and fr(x) = (X12»X22,2X1X2)-

Using the same design points and variance-
covariance matrix as in Example 1, we have the
following results for multi-response K-models for
mixture experiments as given in Table 4, Table 5 and
Table 6.

The values of objective function for approximate
D-optimal design and n-exact D-optimal design are
-7.54437 and 8.10263 respectively.

Example 3 : Suppose ¢ =2 and » = 2. Let us consider
linear and quadratic models with inverse terms i.e.
suppose

[ = (5,2, 1/%,1/x)

and L) = (5, %, %,1/%.1/x).

Assume the same variance-covariance matrix

2=[2 aq'
04 1

We conjecture from Chan and Guan (1994) that
the 9 support points for the saturated design can be
(0.05, 0.95), (0.95, 0.05), (0.06, 0.94), (0.94, 0.06),
(0.07,0.93), (0.93, 0.07), (0.08, 0.92), (0.92, 0.08), and

(0.09, 0.91). The design measure for approximate
D-optimal design is given in Table 7. The value of

Table 7. Multi-response D-optimal design for models
with inverse terms

x4 X, A

0.05 0.95 0.215831
0.95 0.05 0.222216
0.06 0.94 1.49013e-7
0.94 0.06 1.03502e-7
0.07 0.93 0.14255
0.93 0.07 4.65773e-7
0.08 0.92 4.31802e-9
0.92 0.08 0.222205
0.09 0.91 0.197198

objective function for approximate D-optimal design is
—11.4736.

The D-optimal design with the same variance-
covariance matrix

1
>:=[ ”],pe(—l, ),
p 1

for p=0, p=-0.1, p=0.1, p=-04, p=0.4, p=-0.9
and p = 0.9 have the following results of sensitivity
which have been provided in Table 8 and Table 9.
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Table 8. The results of sensitivity analysis of D-optimal design due to variations in 2 for models with inverse terms

X X A0 1S yIS yS) 20 2D
0.05 0.95 0.215831 0.215831 0.215831 0.215831 0.215831 0.215831 0.215831
0.95 0.05 0.222216 | 0.222216 | 0.222216 | 0.222216 | 0.222216 | 0.222216 | 0.222216
0.06 0.94 1.490e-7 1.490e-7 1.490e-7 1.490e-7 1.490e-7 1.490e-7 1.490e-7
0.94 0.06 1.035e-7 1.035e-7 1.035e-7 1.035e-7 1.035e-7 1.035e-7 1.035e-7
0.07 0.93 0.14255 0.14255 0.14255 0.14255 0.14255 0.14255 0.14255
0.93 0.07 4.657e-7 4.657e-7 4.657e-7 4.657e-7 4.657e-7 4.657e-7 4.657e-7
0.08 0.92 4.318e-9 4.318e-9 4.318e-9 4.318e-9 4.318e-9 4.318e-9 4.318e-9
0.92 0.08 0.222205 0.222205 0.222205 0.222205 0.222205 0.222205 0.222205
0.09 0.91 0.197198 | 0.197198 | 0.197198 | 0.197198 | 0.197198 | 0.197198 | 0.197198

Table 9. Variations of the objective values with respect to
variations in X

p 0 +0.1 +0.4 +0.9
Value of [-9.11788 | —9.06763 | —8.24612 | —0.814227
objective
function

5. DISCUSSION

In this section we have mentioned some of the
advantages of the proposed formulation for obtaining
multi-response optimal design.

(1) We can perform sensitivity analysis of the optimal
design.

(2) The proposed formulation is flexible and
comprehensive so that other constraints such as
cost may be added to the model. For example, let
C is given total budget and cost of measuring
observations in each possible design point is given
by cy,..., cg for y,,...,Yg respectively. This
constraint could be defined and added to the
general model as follows

nic; + ... Fngep < C.

(3) We have used MATHEMATIKA-6.0 to generate
multi-response approximate D-optimal design for
Examples 1, 2 and 3. We have also generated
multi-response n-exact D-optimal design for
Examples 1 and 2 only. One can use the SDP
solver of TOMLAB (Holmstrom 2004) and
YALMIP (Lofberg 2005) software within
MATLAB environment to generate multi-response
approximate and n-exact D-, A-, E-optimal
designs with less computation time.

(4) We assume that the random errors are correlated
with each other with variance-covariance matrix
which is of heteroscedastic nature. In general, in
the literature of mixture experiments it is assumed
that the random errors are uncorrelated with
variance-covariance matrix which is of
homoscedastic nature.

6. CONCLUSIONS

In this paper, we propose a formulation for multi-
response D-, E- and A-optimal designs of mixture
experiments. Applicability of the proposed methods has
been investigated using three different examples.
Numerical experiments show that the SDP formulations
generate multi-response optimal designs efficiently. The
SDP formulation has more flexibility to add some cost
and technological constraints within the model.

We have found that using linear and quadratic
Scheffé’s canonical polynomial models and K-models
for mixture experiments we obtain same multi-response
n-exact D-optimal design but slightly different
approximate D-optimal design using the same design
points and variance-covariance matrix. Also we observe
that for all the three examples (from Table 3, Table 6,
and Table 9), that estimation of the unknown parameters
B is improved if the correlation between the responses
is large. However, the sign of covariance does not seem
to have significant effects on the objective function
values.

The SDP formulation enables experimenters to
perform sensitivity analysis on the generated optimal
designs. Furthermore, it allows experimenters to
generate multi-response optimal designs for large scale
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problems using TOMLAB (Holmstrom 2004) and
YALMIP (Lotberg 2005) software within MATLAB
environment.

We have considered only linear and quadratic
Scheffé’s canonical polynomial models, models with
inverse terms and K-models for mixture experiments.
One can use other models of mixture experiments with
more than two response models at a time. Also one can
use models of higher degree in place of linear and
quadratic.
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