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1. INTRODUCTION
Prices of agricultural commodities play a vital role 

in producers’ incentives to produce and consumers’ 
economic access to food, leading to a usual dilemma 
for policy planners. Accurate forecasts of agricultural 
commodity prices reflecting cumulative information 
held by different economic agents can play a crucial 
role in marketing strategy and investment decisions 
and offer suggestions for agricultural policy planning 
(Wang et al., 2020). However, the agricultural 
commodity market is influenced by several factors 
such as climate variability, including seasonality of 
production, the derived nature of demand, market 
imperfections, economic globalization, and a series 
of administrative regulations, making the price series 
extremely complex with nonlinearity, non-stationarity, 
and chaotic characteristics. All these complexities lead 

to the price prediction of agricultural commodities, an 
extremely challenging task.

An extensive review of the literature reveals that 
considerable efforts have been dedicated to improving 
price forecasting through various time series models 
over time (Yu et al., 2017). These models can be 
broadly divided into three categories: statistical models, 
artificial intelligence (AI) techniques, and hybrid 
models combining several techniques systematically 
(Yu et al., 2015). Among the statistical models, the 
autoregressive integrated moving average (ARIMA) 
and their constituent models are the most prevalent (Box 
et al., 2015; Jha and Sinha, 2014). However, the ARIMA 
models are established on the linearity assumption in 
contrast to real-world agricultural price series, which 
are frequently nonlinear. As a result, these approaches 
fail to capture the nonlinear patterns concealed in the 
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original agricultural price series, resulting in poor 
forecast outcomes. On the other hand, AI techniques, 
specifically, artificial neural networks (ANNs), with 
their powerful self-learning capabilities and flexible 
architectures, have been widely utilised to model a 
nonlinear time series with few initial assumptions 
and better forecasting accuracy (Jha and Sinha, 2014; 
Zhang et al., 1998). However, neural network-based 
models are weak at modelling seasonality and non-
stationarity of time series data besides their intrinsic 
weaknesses, such as parameter sensitivity, over fitting 
and local minima.

To remedy the limitations of both statistical and 
AI models, a plenty of hybrid forecasting models 
have been proposed by integrating several techniques 
systematically to explore their effectiveness for 
forecasting applications (Yu et al., 2019). In particular, 
utilising the promising idea of "divide and conquer", 
empirical mode decomposition (EMD) based ensemble 
models have been developed for complex time series 
forecasting with powerful prediction capabilities (Qian 
et al., 2019). The main aim of the EMD technique 
(Huang et al., 1998; Zhang et al., 2008) is to alleviate 
the difficulty of modelling by dividing the complex 
original time series data into a set of relatively stable and 
simple components, whereas under the ensemble stage 
the prediction results of each component aggregate into 
the final prediction.

In recent years, multi scale decomposition based 
on EMD or its variants have been combined with 
TDNN models for different applications (crude 
oil price, wind speed, energy prices) of time series 
forecasting and obtained enhanced prediction accuracy 
in comparison to individual TDNN models (Qian et al., 
2019; Zhu et al., 2016). However, to the best of our 
knowledge, limited efforts are made to analyse and 
forecast agricultural prices using EEMD based neural 
network model despite the fact that agricultural price 
forecasting differs from most other time series due to 
its unique features; thus, the goal of this study is to fill 
this gap in the literature.

In this study, we propose to improve the EEMD 
based TDNN model for agricultural price forecasting 
by utilising a data-driven component reconstruction 
technique. Our approach involves decomposing the 
agricultural price series into the short-run fluctuations, 
a slowly varying part, and long-run trend by exploiting 
EEMD and fine-to-coarse reconstruction (FCR) 

methods and predicting only three components instead 
of several modes; thus, we achieve a better interpretation 
and lower computational cost. The remaining part of 
the paper is laid out as follows: Section 2 describes 
the proposed EEMD-FCR-TDNN hybrid model for 
agricultural price forecasting in detail. For empirical 
evaluation of the proposed model, two internationally 
traded agricultural commodities, namely maize and 
soybean oil monthly price series, are selected in Section 
3. Section 4 concludes the work.

2. METHODOLOGY
An overview of the EEMD based multi scale model 

for agricultural price forecasting is provided in this 
section. First, the EEMD, FCR, and TDNN techniques 
are described briefly. Following that, the suggested 
EEMD-FCR TDNN forecasting model is thoroughly 
explained.

2.1 Ensemble empirical mode decomposition 
(EEMD)
One of the main limitations of the traditional EMD 

method is that the decomposition results may be affected 
by mode mixing where a signal of different scales exists 
in one IMF or a signal of a similar scale resides in 
different IMFs (Zhu et al., 2016) Wu and Huang (2009) 
proposed the EEMD technique by combining white 
noise to the original series leading to homogenization of 
the scale in time-frequency space so that the EMD can 
adaptively filter intrinsic local oscillation to the proper 
scales, which significantly reduces the chance of mode 
mixing and represents a substantial improvement over 
the original EMD. Thus, it decomposes a time series 
into finite simple independent intrinsic mode functions 
(IMFs) based on the local characteristics of the price 
series. The generic procedure for the EEMD method is 
described as follows:
1. Add a Gaussian white noise series with a predefined 

amplitude to agricultural price series ( )y t  under 
consideration

 ( ) ( ) ( )i iy t y t n t= +

 where ( )in t  denotes the ith added white noise series 
and ( )iy t  represents the noise-added agricultural 
price of the ith iteration.

2. Find the local minima and maxima points (extrema) 
and zero crossing for the price series.
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3. Connect these extrema by using a spline function 
to form the upper envelop and lower envelope.

4. Calculate the mean value of lower envelop and 
upper envelope. If the total number of extrema 
and the zero crossing points vary by one and the 
mean value of the envelope is nearly zero, then we 
subtract the mean from the original price series to 
obtain the first IMF. Accordingly, agricultural price 

( )iy t  is decomposed into a set of IMFs ( )ijc t  and 
a residual ( )ir t  where ( )ijc t  is the jth IMF for an ith 
iteration.

5. Repeat the procedure mentioned above for the 
ensembles and take the ensemble average as 
the final decomposition result for each IMF and 
residual.

( ) ( )
1

1 
w

j ij
i

c t c t
w =

= ∑  and ( ) ( )
1

1 w

i
i

r t r t
w =

= ∑
where w is the ensemble size.

2.2 Fine to coarse reconstruction (FCR)
The agricultural price series is decomposed into
1+n  modes by using EEMD. These modes are further 

grouped into high frequency (HF), low frequency 
(LF), and trend components according to their inherent 
data characteristics by employing the fine-to-coarse 
reconstruction method (Zhang et al., 2008; Zhu et al., 
2016). The HF component is made up of all IMFs with 
a high frequency but a low amplitude, and it shows 
random and short-term fluctuations. All IMFs with 
a low frequency and high amplitude show periodic 
oscillations that make up the LF component. Finally, 
the residual of a particular price series is known as the 
trend component. The procedure for the FCR method 
is as follows:

1) Calculate the average of the IMFs ( )iS  from ( )1c t  to 

( ) ( ), 1 ,ic t i n≤ ≤  i.e., i
i

S
S

i
=  where ( )1

i
i jj

S c t
=

= ∑
2) The t-test is used to determine which 

thi  IMF’s 
mean ( )iS  is significant at α  significance level.

3) Once thi  IMF is identified, then all IMFs from  i  to 
n  are grouped as a low-frequency component, and 
all IMFs from the first IMF to ( )1 thi −  are grouped 
as a high-frequency component. The residual is a 
trend component for given price series.

If ( )1
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=∑ , ( )n
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=∑  and ( )r t  represent HF, LF 

and trend components respectivelythen the original 
price series can be represented as:

( ) ( ) ( ) ( )1

1

i n
j jj j i

y t c t c t r t−

= =
= + +∑ ∑  i.e.

( )y t =  HF + LF + Trend

2.3 Time-delay neural network (TDNN)
Artificial neural networks (ANNs) are a type of 

intelligent learning paradigm that is employed in a wide 
range of applications. Time series can be modelled with 
neural networks in two ways: employing a recurrent 
neural network or constructing short-term memory at 
the network’s input layer (Haykin, 2009). A time-delay 
neural network (TDNN) is an example of the latter, 
which uses time delays of a univariate time series to 
capture the temporal dimension of the series to develop 
a short-term memory, namely hetero-associative 
memory, in its network. TDNN with a single hidden 
layer is employed in this study as a learning tool for 
modelling the reconstructed component obtained from 
FCR. A TDNN with a single hidden layer has the 
following generic expression (Jha and Sinha, 2014):

( ) ( )( )( )0 01 1
ˆ q p

j j ijj i
y t g f y t iα α β β

= =
= + + −∑ ∑

where ( )ŷ t  is the predicted value, ( )y t i−  
is the thi  input (lag), ( )0,1 , 2,   .  .  ., j j qα =  and 

( ) 0,1 , 2,   .  .  ., ; 1, 2,   .   .  .,  ij i p j qβ = =  are connection 
weights, p  and q  are the number of input and hidden 
nodes, respectively f  and g  denote the activation 
functions at the hidden and output layers, respectively, 
of the model.

2.4 EEMD-FCR-TDNN model for agricultural 
price series
For any non-stationary and nonlinear time series, 

after using EEMD as a decomposition tool, the 
decomposed modes are grouped into three components 
using the FCR method. TDNN model is then used to 
model and predict these components separately. Thus, 
a multi scale ensemble model, namely, EEMD-FCR-
TDNN, has been proposed by integrating EEMD, 
FCR, and TDNN. The procedure for this model can be 
separated into four parts:
1) Data decomposition: Data-driven decomposition 

technique EEMD is used to decompose a time 
series ( )  y t  into 1 n +  modes (IMFs and residual). 
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These modes have simple structure and stable 
fluctuation.

2) Component reconstruction: The fine to coarse 
reconstruction (FCR) technique group the 
decomposed 1 n +  modes into different meaningful 
components (HF, LF, and Trend) (Yu et al., 2015). 
Now, instead of 1n +  modes, the series is divided 
into three parts only.

3) Individual prediction: The TDNN model is well 
suited for modelling and capturing nonlinear series 
patterns. So, it has been used for forecasting each 
of the components.

4) Ensemble prediction: The final forecast of the 
original price series is obtained by adding the 
predicted value of all three components as:

( )   ŷ t HF LF Trend= + +

where,   ,  ,  HF LF and Trend  represent predicted 
values of high frequency, low frequency and trend 
components respectively.

2.5 Forecasting evaluation criteria
A comprehensive evaluation of each prediction 

model used in the study has been done in terms of root 
mean squared error (RMSE), mean absolute percentage 
error (MAPE), directional prediction statistics ( )statD
, and Diebold-Mariano (DM) test, since no single 
accuracy metric can capture the distributional features 
of the errors completely (Jaiswal et al., 2021; Zhu 
et al., 2016). Out of the above four indicators, RMSE is 
a scale-dependent metric, while MAPE benefits being 
unit-free. These forecasting evaluation criteria for the 
proposed model are described as:
1) Root mean squared error (RMSE)
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( ) ( )
( )1

ˆ1 100%
h

t

y t y t
MAPE

h y t=

 −
= × 
  
∑

 
3) Directional prediction statistics )stat(D

 1

1 100%h
stat tt

D a
h =

= ×∑
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4) Diebold-Mariano (DM) test

For a given time series ( )y t , the DM test (Jiang, 
2021) statistics is defined as:
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d

dz
V

=

where h is the test size, { } 1

h
tet te

=  and { }
1

h

ref t
e

=  are error 
for test model and reference model respectively, g  is 
loss function, td = ( ) ( )tet reft t

g e g e−  is the difference 
between the function prediction error of the two 

models, 
1

1 h

t
t

d d
h =

= ∑  sample mean, 
1

0
1

ˆ 1 2
l

jd
j

V
h

γ γ
−

=

 
= + 

 
∑  

estimate of variance using l step forecasts and 
( ),j t t jcov d dγ −=  is the estimate of jth auto covariance 

of ( ) ( )tet refg e g e −  .

3. EMPIRICAL RESULTS AND DISCUSSION
In this section, two different agricultural commodity 

price series are used to explain the process of proposed 
model empirically. It mainly includes the EEMD 
process to extract IMFs, component reconstruction 
using the fine-to-coarse algorithm, and comparison of 
ensemble prediction results with different models for 
given price series.

3.1 Data description
To test the effectiveness of the proposed (EEMD-

FCR-TDNN) prediction model, this study uses 
monthly international Maize and Soybean oil price 
series (dollar per metric tonne, $/MT) obtained from 
“World Bank Commodity markets ‘Pink Sheet’ data 
(https://www.worldbank.org/en/research/commodity-
markets)” from the period January 1960 to June 2020. 
The long range of these time series data sets enables 
extracting more information and analysing agricultural 
commodity prices long-term. Both price series are 
divided into two subsets: the training and testing sets. 
For each time series, the training set consisting of 
690 observations is used for the model’s parameters 
estimation and enhancing the generalization ability, 
and the last 36 months data is retained for evaluating 
the developed model. Time plots in Fig. 1 indicate 
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the complex behaviour in both series like that of any 
typical agricultural price data. Table 1 shows the basic 
descriptive data for both price series. The international 
maize price varies from $38/MT to $333/MT, whereas 
soybean oil price ranges from $157/MT to $1533/MT 
during the sample period. The value of the coefficient 
of variation, a crude measure of volatility, is close to 
50 percent which points towards the volatile nature of 
both series. Both price series are positively skewed and 
leptokurtic, indicating that they are non-normal. The 
Jarque-Bera test statistics also confirms the non-normal 
nature of both the series.

Since the empirical mode decomposition is suitable 
for a non-stationary and nonlinear process, it becomes 
imperative to test these characteristics of the price series. 
The Augmented Dickey-Fuller (ADF) test (Dickey and 
Fuller, 1979) is an effective unit root test to examine the 
stationarity, and the Brock-Dechert-Scheinkman (BDS) 
test (Choudhary et al., 2019) can effectively check the 
nonlinearity characteristics of a time series. The results 
of the ADF test demonstrate that the probability values 
of maize and soybean oil price series are not less than 
26% and 15%, respectively, indicating that price series 
are non-stationary.

BDS test examines the spatial dependence of a time 
series. Here, the embedding dimension is set to 2 and 3 
with a length of 4, and the dimensional distance is set to 
0.5 times the standard deviation of data. BDS test results 
(Table 2) exhibit that the probability values for price 
series are less than 0.001 for both dimensions, which 
confirms to nonlinearity at a 1% level of significance.

3.2 Data decomposition and component 
reconstruction
The EEMD decomposes the original price series 

of maize and soybean oil into a set of IMFs and 
one residual. The EEMD technique requires three 
hyperparameters, namely ensemble size ( )w , noise 
strength, and stopping criterion (i.e., the maximum 
number of siftings). The determination of the values of 
these hyperparameters is based on the experimentation 
of the data such that the value of θ  (evaluation parameter 
of energy) should be kept as near to zero as possible 
and ultimately provide better forecasting results. After 
going through the empirical evaluation of the different 
combinations of these hyperparameters, the ensemble 
size is fixed at 250, the noise that has been added to 
the original series is fixed at the strength of 0.2 times 

Fig. 1. Time plot for monthly international a) Maize and b) Soybean oil 
price series ($/MT)

Table 1. Descriptive statistics of the price ($/MT) series (from 
January 1960 to June 2020)

Statistics Maize Soybean oil

Mean, Standard deviation 117.56, 57.29 547.66, 275.87

Minimum,Maximum 38.00, 333.05 157.00, 1535.20

Skewness, Kurtosis 1.35, 5.31 0.95, 3.78

Table 2. Brock-Dechert-Scheinkman (BDS) test results

Price 
Series

Embedding dimension

Conclusion
Epsilon

2 3

Statis-
tics

Proba-
bility

Statis-
tics

Proba-
bility

Maize 0.5 σ 134.21 ˂ 0.001 225.05 ˂ 0.001 Nonlinear

1.0 σ 69.93 ˂ 0.001 81.06 ˂ 0.001

1.5 σ 51.66 ˂ 0.001 52.42 ˂ 0.001

2.0 σ 41.22 ˂ 0.001 39.61 ˂ 0.001

Note: For soybean oil, qualitatively similar results 
obtained, hence not reported here.
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the standard deviation of each series, and the stopping 
criterion to obtain an IMF is fixed at 50. In practice, 
the total number of modes is equal to 2log T , where T  
is the total number of observations in the price series. 
Accordingly, both price series are decomposed into 
nine modes, i.e., eight IMFs and one residual depicted 
from high frequency to low frequency in Fig. 2. The 
decomposed modes of EEMD should be orthogonal 
to each other so that the sum of energies of all modes 
is equal to that of the original price series. Practically, 
the decomposed modes do not follow this orthogonal 
property, and some elusive components along with 
modes are continuously generated in the sifting process 
called the end effect (Zhu et al., 2016). This end effect 
increases the sum of energies of all modes, causing the 
changes in the degree of energies before and after the 
decomposition. The energy ( )y tE  of a time series ( )y t  
is defined as:

( )
( )2

1 
T

t
y t

y t
E

T
== ∑ ; 

( ) ( )

( )

2 2
1

n
j r t y tj

y t

E E E

E
θ

=
+ −

=
∑

.

where ( )y tE , jE , and ( )r tE  are the energy value of the 
original time series, 

thj  IMF and residual, respectively. 
Here, 0θ ≥ , as defined above, is used as an evaluation 
parameter for measuring the influence of the end effect. 

0θ =  represents no end effect, whereas the more 
positive value of θ  indicates a greater influence of the 
end effect. A comparison between EMD and EEMD 
decomposition algorithms in terms of energy (θ ) is 
presented in Table 3. It is observed that the value of 
θ  using EEMD decomposition is lesser than EMD for 
both price series. This encouraged us to prefer EEMD 
over EMD as a decomposition technique for this study 
to build the proposed model.

The FCR method (Choudhary et al., 2019; Zhang 
et al., 2008) is used to group all decomposed modes 
(eight IMFs and one residual) obtained through 
EEMD into HF, LF, and trend components. These 
reconstructed HF, LF, and trend components show 
the different intrinsic properties of the original price 
series. For grouping decomposed modes, the t -test 
statistic and probability values of the mean for FCR 
are presented in Table 4 for both price series. Table 
shows that at the point 4=i  modes of maize price 
significantly change at the significance level of 2% 
and therefore 1IMF  to 3IMF  belong to HF components 
while 4IMF  to 8IMF  belong to the LF components. 

Modes of soybean oil price show the significant point 
at 5=i  with a significance level of 1%, so 1IMF  to 

4IMF  form HF components while 5IMF  to 8IMF  form 
LF components.

Table 3. Comparison of EMD and EEMD decomposition 
algorithm in terms of energy ( )θ

Price series EMD EEMD

Maize 0.0405 0.0066

Soybean Oil 0.0179 0.0019

Table 4. Fine to coarse reconstruction for Maize and Soybean oil 
price series

Item Maize Soybean oil

t value Probability t value Probability

S1 -0.89 0.37 -1.62 0.10

S2 -1.22 0.22 -0.53 0.59

S3 -1.28 0.19 -0.45 0.64

S4 -2.32 0.02 0.48 0.62

S5 0.06 0.95 3.78 < 0.01

S6 -3.05 0.002 1.86 0.062

S7 0.50 0.61 5.09 < 0.01

S8 -0.80 0.42 3.78 < 0.01

In general, the spikes of the HF component show the 
effects of short-term fluctuations of markets, whereas 
the LF component spikes represent a particularly 
significant event. Fig. 3 shows the time plots of all 
the three components for both price series. Figure 3 
observed that nearly six such spikes are found in both 
price series. These spikes are generally observed due 
to some significant events (like changes in policy or 
adverse effects of several biotic and abiotic factors) 
affecting the demand-supply equilibrium at that time. 
For example, in our case, the two most significant 
spikes can be seen in 2008 and 2011 in maize and 
soybean oil prices, respectively. Reasons behind both 
events are the 2007-08’s world food crisis and the 
production of biofuels (Trostle, 2011). For ethanol fuel 
production, usage of maize increased from 15% (2006) 
to 40% (2012) of total U.S. maize production. The 
trend component is often treated as the deterministic 
long-term behaviour. It follows the original series 
over a long time due to the evolution of price, global 
population, and the U.S. dollar depreciation value.

Moreover, which component out of the three would 
be dominant is wholly based on the inherent property of 
data. Thus it is imperative to find out the correlation and 
variance of these components with the original price 
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Fig. 2. The IMFs and residual decomposed by (a) EMD and (b) EEMD for Maize price

Note: For soybean oil, similar graph obtained, hence not reported here for brevity.
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series. Table 5 shows Pearson’s correlation coefficients 
between individual reconstructed components obtained 
through FCR and the original price series, along with 
the variability explained by each component for both 
price series.

     Original Data          LF 

      HF                                                                 Trend 

Fig. 3. FCR components for (a) Maize and (b) Soybean oil price series

According to the Table’s result, the correlation 
coefficients between the trend and the original price 
series are 0.71 and 0.70 in maize and soybean oil, 
respectively. At the same time, the variability explained 
by the trend component accounts for more than 72% 
and 54% of the total variability for maize and soybean 
oil prices, respectively. Thus, it is observed that 
the dominant mode among the three decomposed 
components is the trend in both series, indicating that 
the trend component primarily governs both the price 
series. The result for the BDS test for HF, LF, and trend 
components shows that all the three components in 
maize and soybean are nonlinear. This encouraged us 
to employ a nonlinear model, i.e. TDNN, for individual 
prediction.

3.3 Forecasting results and discussion
For this study, we developed a R software package 

named eemdTDNN (Choudhary et al., 2021) published 
in the comprehensive R archive network (CRAN). Here, 
the emdTDNN and EEMDTDNN functions of the above 
package are used to forecast both price series. The 
forecasting performance of the proposed EEMD-FCR-
TDNN model is compared with the existing monoscale 
model, i.e. TDNN and different multiscale ensemble 
models like EMD-TDNN (ensemble the value of all 
IMFs and residual decomposed by EMD and predicted 
by TDNN) and EEMD-TDNN (ensemble the value 
of all IMFs and residual decomposed by EEMD and 
predicted by TDNN) for both price series. Fig. 4 shows 
the plots of level series and predicted series obtained by 
all the models for both price series. The figure clearly 
shows that the EEMD-FCR-TDNN model captures 
price movement patterns and directions significantly 
better than conventional models. Moreover, the 
prediction ability of different models is tested in terms 
of different forecasting evaluation criteria. For both 
price series, RMSE, MAPE, directional prediction 
statistics ( StatD ) and Diebold-Mariano (DM) tests have 
been performed to evaluate each prediction model.

The results from Table 6 indicate that all multiscale 
ensemble forecasting models including, EMD-TDNN, 
EEMD-TDNN, and EEMD-FCR-TDNN, outperform 
the single prediction model, i.e. TDNN for both price 
data in terms of RMSE and MAPE. It is mainly due to 
the “decomposition-ensemble technique” where both 
decomposition techniques (EMD and EEMD) reveal the 
hidden patterns and trends of time series and produce 
stationary and nonlinear modes (IMFs and residual), 
which improve the forecasting ability of TDNN. 
Among multiscale models, EEMD-TDNN outperforms 
EMD-TDNN as expected since EEMD is better than 
EMD in terms of energy and ability to counter both 
mode mixing and end effect. The proposed EEMD-

Table 5. Correlation and variance of the components for the price series

Maize Soybean oil

Pearson correlation Variance Variance as % of 
observed

Pearson correlation Variance Variance as % of 
observed

Observed 3282.92 76109.41

HF 0.23 158.18 4.82% 0.49 12010.9 15.78%

LF 0.50 1462.08 44.54% 0.48 25727.2 33.80%

Trend 0.71 2393.71 72.91% 0.70 41603.5 54.66%
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FCR-TDNN model attains minimum RMSE and 
MAPE for both price series compared with individual 
and multiscale models. It is possible because of the 
algorithm of the FCR method utilized in the proposed 
model for grouping the IMFs and residual into HF, 
LF, and trend components. Each component obtained 
by FCR has apparent uniformity and holds centralized 
feature information. It means these components are 
able to better identify different characteristics of data 
such as short-term fluctuations, significant events, both 
short-term and long-term recurrent events, and their 
cumulative effects as individual IMFs fail to recognize 
them due to insignificant amplitude. After that, the 
most appropriate forecasting model, i.e. TDNN, is used 
for the three nonlinear components, which improves 
the forecasting ability of the proposed model.

With regards to StatD  for direction prediction, 
the results are the same as RMSE and MAPE. As 
shown in Table 6, EEMD-FCR-TDNN significantly 

Fig. 4. The predicted results of different models for Maize and  
Soybean oil price series

outperforms EEMD-TDNN, EMD-TDNN and TDNN 
models for both series. In both price series, the EEMD-
FCR-TDNN model has the lowest RMSE and MAPE 
values, whereas the highest StatD  values, as seen in the 
diagrams.

Other than these evaluation criteria, the Diebold-
Mariano (DM) test is also used to evaluate the 
forecasting accuracy of different models statistically. 
Results of the DM test for each prediction model are 
presented in Table 7. Firstly, all the multiscale ensemble 
models (EMD-TDNN, EEMD-TDNN, EEMD-FCR-
TDNN) perform better than the monoscale model 
(TDNN) at the significance level of less than 1% except 
for maize price where EMD-TDNN outperform TDNN 
at a 6 % significance level. Secondly, EEMD-TDNN 
outperforms EMD-TDNN for both price series, at the 
level of 1% and 4% significance, respectively. Thirdly, 
the proposed EEMD-FCR-TDNN model outperforms 
EMD-TDNN at a 1% and 2% significance level for 
the maize and soybean oil price series. Finally, the 
proposed EEMD-FCR-TDNN model significantly 
outperforms EEMD-TDNN at 1% and less than 1% 
significance level for maize and soybean oil price 
series, respectively.

Table 7. DM test result of several models for Maize price series 
(p-values in bracket)

Series Tested Model
Benchmark Models

TDNN EMD-TDNN EEMD-
TDNN

Maize EMD-TDNN 02.64 (0.006)

EEMD-
TDNN

08.59 (<0.001) 05. 19(<0.001)

EEMD-
FCR-TDNN

09.84(<0.001) 04.39(<0.001) 03.08(0.001)

Note: For soybean oil, qualitatively similar results obtained, hence not 
reported here.

Table 6. Forecasting performance of TDNN, EMD-TDNN, 
EEMD-TDNN and EEMD-FCR-TDNN models for Maize and 

Soybean oil price series

Forecasting 
Models

Maize Soybean oil

MAPE RMSE statD MAPE RMSE statD

TDNN 0.19 32.31 57.14 0.11 99.43 42.85

EMD-TDNN 0.13 29.32 48.57 0.05 61.56 60.00

EEMD-TDNN 0.07 15.15 60.00 0.04 56.50 60.00

EEMD-FCR-
TDNN

0.03 08.89 62.85 0.04 50.73 74.28
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4. CONCLUSIONS
In this study, a new multiscale data-adaptive model, 

namely EEMD-FCR-TDNN, is proposed to predict 
non-stationary and nonlinear properties of time-series 
data. The proposed model is compared with existing 
mono scale model and multi scale ensemble models 
using the world market’s monthly maize and soybean 
oil price series. Empirical results clearly reveal that all 
multiscale ensemble models outperform the monoscale 
model in terms of RMSE, MAPE and StatD  value. 
Further, the proposed EEMD-FCR-TDNN model 
significantly outperforms all other models with respect 
to different forecasting evaluation criteria of both 
level and directional predictions. Finally, the proposed 
EEMD-FCR-TDNN model can serve as a competitive 
model for agricultural price forecasting.
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