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1.	 INTRODUCTION
Edible oil price forecasting is a critical activity 

that has significant impacts on both the producers 
and consumers of edible oils. The price of edible oils 
is subject to various factors, including supply and 
demand, weather conditions, geopolitical events, and 
commodity trading. Accurately forecasting future prices 
can help producers and traders to make better-informed 
decisions about when to buy and sell, thus mitigating 
risks and maximising profits. At the same time, 
consumers can benefit from accurate price forecasting, 
as they can make informed purchasing decisions and 
avoid sudden price increases. Governments also rely 
on accurate price forecasts to manage food security, 
stabilise prices, and ensure adequate supplies of 
edible oils for their citizens. Overall, edible oil price 
forecasting plays a crucial role in supporting a stable, 
efficient, and sustainable food system. Capturing the 
edible stock price through classical models is impossible 
due to the market’s complexity and chaotic dynamics 
and many non-decidable, nonstationary stochastic 
variables involved (Marszalek and Burczynski, 2014). 
Therefore, deep learning models were used to combat 

these above issues. In this paper,LSTM-based Stacked 
Autoencoder (LSTM- SAE) was used to capture the 
above-stated problems and compared with other deep 
learning models like Gated Recurrent Unit (GRU), 
Long-Short Term Memory (LSTM), Bi-directional 
LSTM (Bi-LSTM).

LSTM autoencoders have gained significant 
attention in recent years as a powerful tool for time 
series forecasting. An LSTM autoencoder is a type of 
neural network that utilises Long-Short Term Memory 
(LSTM) units to learn a compact representation of the 
input time series. The network is trained to encode the 
input time series into a low-dimensional latent space 
and then decode it back to the original time series. By 
minimising the reconstruction error between the input 
and the output, the network learns to capture the most 
important features of the time series in the latent space. 
The trained LSTM autoencoder can then be used for 
time series forecasting by predicting the future values 
of the time series based on the learned representation in 
the latent space. Unlike traditional statistical models, 
LSTM autoencoders can capture complex temporal 
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patterns and non-linear relationships in the data, making 
them a powerful tool for time series forecasting.

In the remainder of this paper, section 2 reviews the 
literature used for the financial market prediction and 
other domains. Section 3 formulates the problem and 
gives detail on LSTM-Stacked Autoencoders (LSTM-
SAE). Furthermore, it deals with the experimental 
analysis with the proposed model and compares the 
obtained results with those given by other prediction 
models. Finally, sections 4 and 5 deal with the results 
of the real dataset, its conclusions, and references.

2.	 REVIEW OF LITERATURE
Analysing Univariate Time Series (UTS) data is 

easy and common; however, analysing Multivariate 
Time series (MTS) data is complex due to the correlated 
signals involved (Wei et al., 2006).The key challenge 
in MTS problems is to model such complex real-world 
data and automatically learn the latent features from the 
correlated input data (Yi et al., 2017). Several studies 
use autoencoders to predict time series (Gensler et al., 
2016; Bao et  al., 2017; Sagheer and Kotb, 2019). 
Autoencoders mainly used for dimensionality reduction 
(Schmidhuber et  al., 1992 and Hinton et  al., 2006), 
Classification (Vincent et  al., 2010), data denoising 
(Romeuet  al., 2015), image generation (Zha et  al., 
2018), anomaly detection (Guo et al., 2018, Kieu et al., 
2019), generation of data (Zha et  al., 2018), missing 
value imputation (Pan et  al., 2022) and time series 
forecasting (Sagheer and Kotb, 2019, Wu et al., 2019, 
Xie and Yu, 2021). Recent literature reviews about the 
Autoencoder are listed in Table 1.

3.	 MATERIALS AND METHODS

3.1	 Gated recurrent unit (GRU)
Gated Recurrent Unit (GRU) is a type of recurrent 

neural network (RNN) that was introduced by Cho 
et al. (2014) as an alternative to the LSTM. GRU uses 
gating mechanisms to control the flow of information 
between cells in the neural network and is composed 
of two gates: an update gate and a reset gate. These 
gates help filter out unnecessary information, solving 
the problems of vanishing and exploding gradients 
commonly encountered in traditional RNNs. Compared 
to LSTM, GRU has fewer parameters due to the 
absence of one gate and can only store long and short-
term memory in the hidden state, lacking a separate cell 
state. Recent studies have shown that GRUs outperform 

LSTMs on certain smaller and less frequent datasets. 
Fig. 1 displays the internal architecture of a GRU unit 
cell.

The process can be described as:

( )1  z z
t t t zZ x w h U bσ −= + +

( )1   r r
t t t zr x w h U bσ −= + +

 ( )1     t t t th tan r h U x W b−= × + +

( ) 

11     t t t t th Z h Z h −= − × + ×

where zw , rw , W  denote the weight matrices for 
the corresponding connected input vector. zU , rU , U  
represent the weight matrices of the previous time step, 
and , r zb b  and b  are bias. The σ  denotes the sigmoid 
function, tr  denotes the reset gate, tz  denotes the 
update gate, and th  denotes the candidate hidden layer.

Table 1. Review of time series data and modelling  
tasks using Autoencoder

Authors Application Values in task Model 
category

(Panet al., 
2022)

Imputation Median of the input 
data

AM, DAE

(Zha et al., 
2018)

Generation Smart grid data VAE, GRU

(Zhang et al., 
2019)

Anomaly 
Detection and 

Generation

Time series LSTM, VAE, 
Encoder-
Decoder

(Guo et al., 
2018)

Anomaly 
Detection

Simulations on real 
world dataset

GRU, VAE

(Kieu et al., 
2019)

Anomaly 
Detection

Electrocardiography 
(ECG)

S-RNNs

(Oleksandra 
et al., 2019)

Anomaly 
Detection

Rare sound events 
dataset

Encoder-
decoder

(Zhou et al., 
2022)

Anomaly 
Detection

Medical and 
Meteorologic data

AE, CNN and 
GRU

(Wuet al., 
2023)

Anomaly 
Detection

Air quality data 
(Indore)

LSTM, AE

(Li Xie and 
Sheng Yu, 

2021)

Forecasting SPY, NASDAQ, 
DJIA index

ANN, CNN, 
RNN, LSTM

(Sagheer and 
Kotb, 2019)

Forecasting Medical and 
meteorologic data

LSTM-RN 
and GRU

(Wuet al., 
2019)

Forecasting Heart rate ECG 
signals

CNN, RNN

(Jung and 
Choi., 2021)

Forecasting FXVIX, BPVIX, 
EUVIX, BPVIX

Hybrid ANN 
based on AE
and LSTM
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3.2	 Long-Short Term Memory (LSTM)
Long short-term memory (LSTM) is a specific 

type of recurrent neural network (RNN) architecture 
proposed by Hochreiter et  al. in 1997. Unlike a 
traditional feed-forward neural network, it includes 
feedback connections, making it suitable for single-
point and sequential data. The essential components of 
LSTM are an input gate, an output gate, and a forget 
gate. The LSTM network was developed to overcome 
the vanishing gradient problem that commonly occurs 
in traditional RNNs during training. LSTM is a cell 
memory unit, which means that it can remove or add 
information to the cell state. By incorporating a specific 
internal structure into the model, LSTM has resolved 
the vanishing and exploding gradients problems 
commonly encountered in RNNs. Nowadays, LSTM 
is recognised as a powerful method for processing, 
classifying, and predicting time series data.

There are three gate controls: input gate (it), 
output gate (ot), and forget gate (ft) in LSTM cell. The 
structure of the LSTM unit is shown in Fig. 2 and the 
main calculation process is described as follows

The main calculation process is described as 
follow:

( )1 1t ix t im t ic t ii W x W m W C bσ − −= + + +

( )1 1t fx t fm t fc t ff W x W m W C bσ − −= + + +

( )1 1t t t t cx t cm t cc f c i g W x W m b− −= + + +☉ ☉

( )1 1t ox t om t oc t oo W x W m W C bσ − −= + + +

( )t t tm o h c= ☉

(t ym t yy W m bϕ= + )
where tc  represent the memory cell, w and b are 

the weight matrices and the bias vectors, respectively, 
tx  denotes the input data at a present time step t ,  σ  

is the sigmoid function, and φ is the output activation 
function.

Fig. 1. Architecture of the GRU

Fig. 2. Architecture of the LSTM

3.3	 Bidirectional LSTM (Bi-LSTM)
The bidirectional LSTM (Bi-LSTM) model, 

illustrated in Fig. 3, consists of a forward LSTM 
layer and a backward LSTM layer. The LSTM hidden 
vectors of the forward and backward layers at time t 
are denoted as th



 and th


, respectively. These hidden 
vectors are independent of each other and are only 
related to their respective LSTM layers, as shown in 
the figure. The output of the Bi-LSTM (yt) is obtained 
by taking a weighted combination of these two hidden 
layers. This process can be described as:

( )1,t t th LSTM x h −=
 

th


=LSTM 1( , )t tx h +



( )y tt t t yh hy W h W h bδ= + + 

 

where LSTM(.), represents LSTM network, 
yhW  and thW  represent the weight of the forward and 

backward LSTM layer at time t, respectively, yb  
denotes the bias of the output layer, δ (.) represents the 
activation function.

Fig. 3. Architecture of the Bi-LSTM
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3.4	 Autoencoder (AE)
Autoencoder (AE) was first introduced by 

Rumelhart et al. (1985) as a neural network for self-
supervised learning. AE consists of an input layer, 
output layer, and hidden layers, and its goal is to 
derive a representation for an input dataset, such as 
dimensionality reduction, while keeping the reorganised 
data as close as possible to the input data. In Fig. 4, the 
encoder stage learns important characteristics of the 
inputs, while the decoder generates outputs similar to 
the inputs. The output represents a state where the noise 
of the inputs is removed, resulting in more distinct 
characteristics.

1 (Y f W=  . ) X b+

2 (X f W=   . ) Y b+

where 1W  is the weight between input X and hidden 
representation Y, 2W  is the weight between a hidden 
representation Y and the output X , and b is the bias, 
f  and f  represent the encoder and decoder, respectively, 
f accepts and compresses the input data (X) into a latent 
space (Y), and f  is responsible for accepting latent 
space (Y) representations and reconstructing original 
inputs (  )X .

Fig. 4. Structure of an autoencoder

3.5	 Stacked Autoencoder (SAE):
To improve performance by manipulating hidden 

layers, Stacked Autoencoder (SAE) is used in several 
methods. When a neural network is deep, a stacked 

autoencoder is utilised to solve the vanishing gradient 
problem by stacking hidden layers. Fig. 5 illustrates 
a simple example of a stacked autoencoder, where 
hidden nodes are increased by stacking autoencoders 
hierarchically.

3.6	 LSTM Autoencoder (LSTM-AE)
The LSTM Autoencoder has a similar structure 

to an autoencoder but is built using LSTM layers, as 
illustrated in Fig.  6. The LSTM-AE model has the 
ability to learn complex and dynamic input sequence 
data from adjacent periods by utilising memory cells 
that can remember long input sequence data.

Fig. 6. Structure of a LSTM Autoencoder (LSTM-AE)

3.7	 LSTM based Stacked Autoencoder (LSTM-
SAE)
The LSTM-based Stacked Autoencoder (LSTM-

SAE) has the same structure as LSTM-AE, but with 
stacked LSTM cells to solve the vanishing gradient 
problem (Fig. 7).

Fig. 7. Structure of a LSTM based Stacked Autoencoder (LSTM-SAE)

Adding the “Repeat Vector” to the layer is nothing 
but repeating the input n number of times. Whereas, the 
“Time Distributed layer” takes the information from 
the previous layer and creates a vector with a length of 
the output layers.

4.	 RESULTS AND DISCUSSION
The experimental dataset for this study consists of 

the daily price of Ruchi soya stock (in INR), obtained 
from the Yahoo finance website (https://finance.yahoo.

Fig. 5. Structure of a Stacked Autoencoder (SAE)
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com/quote/RUCHI.NS?p=RUCHI.NS&.tsrc=fin-
srch), covering the period from January 1, 2015, to 
February 24, 2023. The descriptive statistics of the soya 
stock series used in the study are presented in Table 2 
and depicted in Fig. 8. Table 3 includes statistical 
tests to confirm the stationarity and linearity of the 
considered data.

Fig. 8. Ruchi Soya stock price daily data (in INR) from Jan 01, 2015 
through Feb 24, 2023

Table 2. Descriptive statistics of Soya stock price series (in INR)

Descriptive statistics Closing price (in INR)

Minimum 17.00

Mean 1571.21

Maximum 4765.00

Standard deviation 1080.63

Coefficient of variation (%) 68.77

Skewness 0.88

Kurtosis -0.08

Jarque-Bera 264.26**

A stationary series has a mean/variance, or both 
remain constant across time. The Augmented Dickey-
Fuller (ADF), Phillip-Perron (PP), and Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) tests are used to 
determine whether the data series is stationary or 
not. The null hypothesis of the ADF test is that the 
time series contains a unit root, indicating that it is 
nonstationary. Soya price series failed to reject the null 
hypothesis in this case study. Meanwhile, PP test defines 
the null hypothesis that the time series is integrated of 
order 1. Table 4 shows the results of these tests, which 
substantiate the non-stationarity.

Table 3. ADF, PP and KPSS test results of daily price series of 
soya stock

Price series ADF test PP test KPSS test

Statistic p-value Statistic value Statistic p-value

Soya stock 
price series

-1.84 0.35 -2.42 0.28 4.95 0.01

Brock-Dechert-Scheinkman (BDS) test has 
been employed for testing of nonlinearity. The null 
hypothesis states that the series is independent and 
identically distributed. The results of the test are shown 
in Table 5, where it can be seen that the probability 
values computed at points 0.50 to 2.00 confirm the 
nonlinearity in soya stock market price data for the 
embedding dimensions (number of lags) 2 and 3.

Table 4. BDS test for nonlinearity

Epsilon for close 
points

Embedding dimensions p- value

2 3

0.5 σ 208.08 324.99 <0.0001

1.0 σ 144.16 176.64 <0.0001

1.5 σ 136.38 150.76 <0.0001

2.0 σ 121.97 122.33 <0.0001

The normalisation technique changes the form of 
a data series by rescaling its values between 0 and 1.

( ) ( )'  /t t min max minX X X X X= − −

where Xmin, Xmax and Xt are the minimum, 
maximum and observation at time t, respectively and 

'
tX  is the rescaled value. In python software, we have 

used MinMaxScaler function of the Scikitlearn package 
for this purpose.

All the above models are fitted by using Python 
software. The model implementation on the dataset 
(2017 data points) begins with partitioning of the data 
series in to 70, 20 and 10 percent [i.e., training (1412 
data points), validation (404 data points) and testing 
(201 data points)]. The use of hyperparameters is an 
important aspect of deep learning, as they can greatly 
affect the performance of a model. In this case, the 
hyperparameters selected were the number of lags 
(1, 5, 10, 30), batch size (8, 16, 32, 64,128, 256), the 
number of epochs (50, 100, 150, 200), the number of 
hidden layers (1,2), the number of hidden units (8, 16, 
32, 64, 128, 256) and dropout rate (0.0, 0.1, 0.2). These 
were chosen based on their potential impact on the 
model’s performance and were varied across a range of 
values in order to find the optimal combination through 
grid search cross validation technique. After obtaining 
the best hyperparameters, training has to be done. The 
optimal hyperparameter of the models has been given 
in Table 5.

The batch size determines the number of samples 
that are processed before the model’s weights are 
updated. Larger batch sizes can lead to more stable 
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gradients but can also require more computational 
resources. The number of epochs determines the number 
of times the model is trained on the entire dataset. More 
epochs can lead to better model performance, but can 
also increase the risk of overfitting. The number of 
input units determines the number of variables that the 
model takes as input. A larger number of input units can 
allow the model to capture more complex relationships 
in the data, but can also lead to higher computational 
costs.
Table 5. Optimal hyperparameter selection for several forecasting 

models

Hyperparameters GRU LSTM Bi-
LSTM

LSTM-
AE

LSTM-
SAE

Batch size 32 128 64 128 64

No. of epochs
(Stopping criteria)

76 57 78 27 65

No. of hidden 
layers

1, 2 2 1,2 1 2

No. of hidden units 32 32, 64 64 128 128, 64

Drop rate 0.1 0.1 0.2 0.3 0.2

No. of lags 10 5 10 30 10

Once the optimal combinations of hyperparameters 
were found, the model was used for prediction. The use 
of the early stopping method ensured that the model was 
not trained for too long, which can lead to overfitting 
and poor generalisation of new data. Henceforth, 
the selection and tuning of hyperparameters is an 
important step in building a machine-learning or deep 
leaning model, and can greatly affect its performance. 
It is important to note that the optimal hyperparameters 
may not be the same for all datasets or tasks, and may 
need to be determined on a case-by-case basis.

After obtaining the best parameters, all above stated 
models were trained by using early stopping criteria 
technique to avoid overfitting of the model. Then, to 
know the impact of several deep trained models were 
forecasted for 1 day, 5 day, 10 day and 30 days (Fig.s 9, 
10,11 and 12). The result based on RMSE and MAPE 
revealed that all the above stated models perform 
well for a-head forecast but as time period increases 
GRU, Bi-LSTM shows poor performance but LSTM, 
LSTM-AE and LSTM-SAE performs well (Table 6). 
During 10 day and 30-day head forecast, LSTM lose its 
performance but LSTM-AE and LSTM-SAE captures 
long memory property and also forecast at longer 
horizon.

Table 6. Optimised results obtained by different models for the 
Soya stock price series

Model 1 day Forecast 5-day Forecast 10-day Forecast 30-day Forecast

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

GRU 101.70 6.65 166.69 11.68 341.59 24.29 350.31 25.36

LSTM 30.29 1.27 137.129 9.30 206.93 14.56 349.47 25.05

Bi-
LSTM

114.28 6.11 153.94 8.01 342.91 23.48 437.81 31.11

LSTM-
AE

51.18 3.18 163.43 10.88 108.25 7.01 105.60 7.43

LSTM-
SAE

39.34 2.40 113.92 6.82 104.85 6.71 84.27 5.64

Fig. 9. One day ahead forecast using five different models for test data

Fig. 10. Five days ahead forecast by using five different  
models for test data

Fig. 11. Ten days ahead forecast by using five different models for test data
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LSTM Stacked Autoencoders (LSTM-SAEs) are 
a powerful tool for time series forecasting, as they 
can capture long-term dependencies using RNNs, 
especially LSTM cells. Moreover, SAEs employ an 
encoder that compresses multivariate time series into 
a smaller latent space, identifying critical features 
like trend, seasonality, and chaotic patterns while 
filtering out irrelevant or noisy data. By reducing the 
dimensionality of the input through compression into a 
smaller representation in the latent space, autoencoders 
make it easier to learn and model complex patterns in 
the time series data. As a result, the model can produce 
more precise forecasts and achieve better overall 
performance by capturing both temporal dependencies 
and chaotic patterns in the time series data.

5.	 CONCLUSION
The goal of this study was to forecast Ruchi soya 

stock price series based on deep learning models. From 
our study it can be inferred that the proposed model 
LSTM-SAE model outperformed the other competitive 
model like LSTM-AE, LSTM, Bi-LSTM, and GRU. 
In practice, our findings can be helpful to researchers 
and policy makers who determine national economic 
policies related to edible oil marketing because Ruchi 
soya stock reveal important trends for the Indian 
economy. Moreover in this study, hyperparameter 
optimisation was performed using only a grid search 
cross validation technique, which is a commonly 
used machine learning/ deep learning algorithm, but 
there is also a research gap to increase the reliability 
of prediction by considering additional optimisation 
algorithms.

Code availability: Code will be available on 
request to the corresponding author.

Fig. 12. Thirty days ahead forecast by using five different  
models for test data
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APPENDIX
Python code for the LSTM stacked autoencoders 
(LSTM-SAEs) for multivariate time series 
forecasting

X_train, y_train = split_series(train.values,n_past, n_
future)

X_train = X_train.reshape((X_train.shape[0], X_train.
shape[1],n_features))

y_train = y_train.reshape((y_train.shape[0], y_train.
shape[1], n_features))

X_test, y_test = split_series(test.values,n_past, n_future)
X_test = X_test.reshape((X_test.shape[0], X_test.

shape[1],n_features))
y_test = y_test.reshape((y_test.shape[0], y_test.

shape[1], n_features))
encoder_inputs = tf.keras.layers.Input(shape=(n_past, 

n_features))
encoder_l1 = tf.keras.layers.LSTM(128, return_

sequences = True, return_state=True)
encoder_outputs1 = encoder_l1(encoder_inputs)
encoder_states1 = encoder_outputs1[1:]
encoder_l2 = tf.keras.layers.LSTM(128, return_

state=True)
encoder_outputs2 = encoder_l2(encoder_outputs1[0])
encoder_states2 = encoder_outputs2[1:]
decoder_inputs = tf.keras.layers.RepeatVector(n_future)

(encoder_outputs2[0])
decoder_l1=tf.keras.layers.LSTM(128,          return_

sequences=True)(decoder_inputs,initial_state = encoder_
states1)

decoder_l2 = tf.keras.layers.LSTM(128, return_
sequences=True)(decoder_l1,initial_state = encoder_states2)

decoder_outputs2 = tf.keras.layers.TimeDistributed(tf.
keras.layers.Dense(n_features))(decoder_l2)

model_e2d2 = tf.keras.models.Model(encoder_
inputs,decoder_outputs2)

model_e2d2.summary()




