
Available online at www.isas.org.in/jisas
JOURNAL OF THE INDIAN SOCIETY OF

AGRICULTURAL STATISTICS 77(1) 2023  71–78

1.	 INTRODUCTION
Edible oil price forecasting is a critical activity

that has significant impacts on both the producers
and consumers of edible oils. The price of edible oils
is subject to various factors, including supply and
demand, weather conditions, geopolitical events, and
commodity trading. Accurately forecasting future prices
can help producers and traders to make better-informed
decisions about when to buy and sell, thus mitigating
risks and maximising profits. At the same time,
consumers can benefit from accurate price forecasting,
as they can make informed purchasing decisions and
avoid sudden price increases. Governments also rely
on accurate price forecasts to manage food security,
stabilise prices, and ensure adequate supplies of
edible oils for their citizens. Overall, edible oil price
forecasting plays a crucial role in supporting a stable,
efficient, and sustainable food system. Capturing the
edible stock price through classical models is impossible
due to the market’s complexity and chaotic dynamics
and many non-decidable, nonstationary stochastic
variables involved (Marszalek and Burczynski, 2014).
Therefore, deep learning models were used to combat

these above issues. In this paper,LSTM-based Stacked
Autoencoder (LSTM- SAE) was used to capture the
above-stated problems and compared with other deep
learning models like Gated Recurrent Unit (GRU),
Long-Short Term Memory (LSTM), Bi-directional
LSTM (Bi-LSTM).

LSTM autoencoders have gained significant
attention in recent years as a powerful tool for time
series forecasting. An LSTM autoencoder is a type of
neural network that utilises Long-Short Term Memory
(LSTM) units to learn a compact representation of the
input time series. The network is trained to encode the
input time series into a low-dimensional latent space
and then decode it back to the original time series. By
minimising the reconstruction error between the input
and the output, the network learns to capture the most
important features of the time series in the latent space.
The trained LSTM autoencoder can then be used for
time series forecasting by predicting the future values
of the time series based on the learned representation in
the latent space. Unlike traditional statistical models,
LSTM autoencoders can capture complex temporal

LSTM based Stacked Autoencoder Approach for Time Series Forecasting

K.N. Singh, Kamal Sharma, G. Avinash, Rajeev Ranjan Kumar, Mrinmoy Ray,
Ramasubramanian V., Achal Lama and S.B. Lal

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Received 16 March 2023; Revised 03 April 2023; Accepted 20 April 2023

SUMMARY
This study proposes a novel approach for multi-step time series forecasting using a stacked long-short term memory (LSTM) sequence-to-sequence
autoencoder (LSTM-SAE) to handle the volatility of edible oil prices in the Indian market. The approach was implemented on Ruchi Soya Ltd.
stock price dataset and compared with other deep learning models like Gated Recurrent Unit (GRU), LSTM, and Bi-directional LSTM. The LSTM-
SAE outperformed other models in closing price prediction based on evaluation metrics like Root Mean Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE). The proposed approach has significant implications for stakeholders in the edible oil and oilseeds industry, including
farmers, traders, and policymakers.

Keywords: Deep learning, LSTM, Autoencoder, Gated Recurrent Unit (GRU), Stock price.

Corresponding author: K.N. Singh
E-mail address: kn.singh@icar.gov.in

72 K.N. Singh et al. / Journal of the Indian Society of Agricultural Statistics 77(1) 2023  71–78

patterns and non-linear relationships in the data, making
them a powerful tool for time series forecasting.

In the remainder of this paper, section 2 reviews the
literature used for the financial market prediction and
other domains. Section 3 formulates the problem and
gives detail on LSTM-Stacked Autoencoders (LSTM-
SAE). Furthermore, it deals with the experimental
analysis with the proposed model and compares the
obtained results with those given by other prediction
models. Finally, sections 4 and 5 deal with the results
of the real dataset, its conclusions, and references.

2.	 REVIEW OF LITERATURE
Analysing Univariate Time Series (UTS) data is

easy and common; however, analysing Multivariate
Time series (MTS) data is complex due to the correlated
signals involved (Wei et al., 2006).The key challenge
in MTS problems is to model such complex real-world
data and automatically learn the latent features from the
correlated input data (Yi et al., 2017). Several studies
use autoencoders to predict time series (Gensler et al.,
2016; Bao et al., 2017; Sagheer and Kotb, 2019).
Autoencoders mainly used for dimensionality reduction
(Schmidhuber et al., 1992 and Hinton et al., 2006),
Classification (Vincent et al., 2010), data denoising
(Romeuet al., 2015), image generation (Zha et al.,
2018), anomaly detection (Guo et al., 2018, Kieu et al.,
2019), generation of data (Zha et al., 2018), missing
value imputation (Pan et al., 2022) and time series
forecasting (Sagheer and Kotb, 2019, Wu et al., 2019,
Xie and Yu, 2021). Recent literature reviews about the
Autoencoder are listed in Table 1.

3.	 MATERIALS AND METHODS

3.1	 Gated recurrent unit (GRU)
Gated Recurrent Unit (GRU) is a type of recurrent

neural network (RNN) that was introduced by Cho
et al. (2014) as an alternative to the LSTM. GRU uses
gating mechanisms to control the flow of information
between cells in the neural network and is composed
of two gates: an update gate and a reset gate. These
gates help filter out unnecessary information, solving
the problems of vanishing and exploding gradients
commonly encountered in traditional RNNs. Compared
to LSTM, GRU has fewer parameters due to the
absence of one gate and can only store long and short-
term memory in the hidden state, lacking a separate cell
state. Recent studies have shown that GRUs outperform

LSTMs on certain smaller and less frequent datasets.
Fig. 1 displays the internal architecture of a GRU unit
cell.

The process can be described as:

()1 z z
t t t zZ x w h U bσ −= + +

()1 r r
t t t zr x w h U bσ −= + +

 ()1 t t t th tan r h U x W b−= × + +

() 

11 t t t t th Z h Z h −= − × + ×

where zw , rw , W denote the weight matrices for
the corresponding connected input vector. zU , rU , U
represent the weight matrices of the previous time step,
and , r zb b and b are bias. The σ denotes the sigmoid
function, tr denotes the reset gate, tz denotes the
update gate, and th denotes the candidate hidden layer.

Table 1. Review of time series data and modelling
tasks using Autoencoder

Authors Application Values in task Model
category

(Panet al.,
2022)

Imputation Median of the input
data

AM, DAE

(Zha et al.,
2018)

Generation Smart grid data VAE, GRU

(Zhang et al.,
2019)

Anomaly
Detection and

Generation

Time series LSTM, VAE,
Encoder-
Decoder

(Guo et al.,
2018)

Anomaly
Detection

Simulations on real
world dataset

GRU, VAE

(Kieu et al.,
2019)

Anomaly
Detection

Electrocardiography
(ECG)

S-RNNs

(Oleksandra
et al., 2019)

Anomaly
Detection

Rare sound events
dataset

Encoder-
decoder

(Zhou et al.,
2022)

Anomaly
Detection

Medical and
Meteorologic data

AE, CNN and
GRU

(Wuet al.,
2023)

Anomaly
Detection

Air quality data
(Indore)

LSTM, AE

(Li Xie and
Sheng Yu,

2021)

Forecasting SPY, NASDAQ,
DJIA index

ANN, CNN,
RNN, LSTM

(Sagheer and
Kotb, 2019)

Forecasting Medical and
meteorologic data

LSTM-RN
and GRU

(Wuet al.,
2019)

Forecasting Heart rate ECG
signals

CNN, RNN

(Jung and
Choi., 2021)

Forecasting FXVIX, BPVIX,
EUVIX, BPVIX

Hybrid ANN
based on AE
and LSTM

73K.N. Singh et al. / Journal of the Indian Society of Agricultural Statistics 77(1) 2023  71–78

3.2	 Long-Short Term Memory (LSTM)
Long short-term memory (LSTM) is a specific

type of recurrent neural network (RNN) architecture
proposed by Hochreiter et al. in 1997. Unlike a
traditional feed-forward neural network, it includes
feedback connections, making it suitable for single-
point and sequential data. The essential components of
LSTM are an input gate, an output gate, and a forget
gate. The LSTM network was developed to overcome
the vanishing gradient problem that commonly occurs
in traditional RNNs during training. LSTM is a cell
memory unit, which means that it can remove or add
information to the cell state. By incorporating a specific
internal structure into the model, LSTM has resolved
the vanishing and exploding gradients problems
commonly encountered in RNNs. Nowadays, LSTM
is recognised as a powerful method for processing,
classifying, and predicting time series data.

There are three gate controls: input gate (it),
output gate (ot), and forget gate (ft) in LSTM cell. The
structure of the LSTM unit is shown in Fig. 2 and the
main calculation process is described as follows

The main calculation process is described as
follow:

()1 1t ix t im t ic t ii W x W m W C bσ − −= + + +

()1 1t fx t fm t fc t ff W x W m W C bσ − −= + + +

()1 1t t t t cx t cm t cc f c i g W x W m b− −= + + +☉ ☉

()1 1t ox t om t oc t oo W x W m W C bσ − −= + + +

()t t tm o h c= ☉

(t ym t yy W m bϕ= +)
where tc represent the memory cell, w and b are

the weight matrices and the bias vectors, respectively,
tx denotes the input data at a present time step t , σ

is the sigmoid function, and φ is the output activation
function.

Fig. 1. Architecture of the GRU

Fig. 2. Architecture of the LSTM

3.3	 Bidirectional LSTM (Bi-LSTM)
The bidirectional LSTM (Bi-LSTM) model,

illustrated in Fig. 3, consists of a forward LSTM
layer and a backward LSTM layer. The LSTM hidden
vectors of the forward and backward layers at time t
are denoted as th



 and th


, respectively. These hidden
vectors are independent of each other and are only
related to their respective LSTM layers, as shown in
the figure. The output of the Bi-LSTM (yt) is obtained
by taking a weighted combination of these two hidden
layers. This process can be described as:

()1,t t th LSTM x h −=
 

th


=LSTM 1(,)t tx h +



()y tt t t yh hy W h W h bδ= + + 

 

where LSTM(.), represents LSTM network,
yhW and thW represent the weight of the forward and

backward LSTM layer at time t, respectively, yb
denotes the bias of the output layer, δ (.) represents the
activation function.

Fig. 3. Architecture of the Bi-LSTM

74 K.N. Singh et al. / Journal of the Indian Society of Agricultural Statistics 77(1) 2023  71–78

3.4	 Autoencoder (AE)
Autoencoder (AE) was first introduced by

Rumelhart et al. (1985) as a neural network for self-
supervised learning. AE consists of an input layer,
output layer, and hidden layers, and its goal is to
derive a representation for an input dataset, such as
dimensionality reduction, while keeping the reorganised
data as close as possible to the input data. In Fig. 4, the
encoder stage learns important characteristics of the
inputs, while the decoder generates outputs similar to
the inputs. The output represents a state where the noise
of the inputs is removed, resulting in more distinct
characteristics.

1 (Y f W= .) X b+

2 (X f W=  .) Y b+

where 1W is the weight between input X and hidden
representation Y, 2W is the weight between a hidden
representation Y and the output X , and b is the bias,
f  and f represent the encoder and decoder, respectively,
f accepts and compresses the input data (X) into a latent
space (Y), and f is responsible for accepting latent
space (Y) representations and reconstructing original
inputs ()X .

Fig. 4. Structure of an autoencoder

3.5	 Stacked Autoencoder (SAE):
To improve performance by manipulating hidden

layers, Stacked Autoencoder (SAE) is used in several
methods. When a neural network is deep, a stacked

autoencoder is utilised to solve the vanishing gradient
problem by stacking hidden layers. Fig. 5 illustrates
a simple example of a stacked autoencoder, where
hidden nodes are increased by stacking autoencoders
hierarchically.

3.6	 LSTM Autoencoder (LSTM-AE)
The LSTM Autoencoder has a similar structure

to an autoencoder but is built using LSTM layers, as
illustrated in Fig. 6. The LSTM-AE model has the
ability to learn complex and dynamic input sequence
data from adjacent periods by utilising memory cells
that can remember long input sequence data.

Fig. 6. Structure of a LSTM Autoencoder (LSTM-AE)

3.7	 LSTM based Stacked Autoencoder (LSTM-
SAE)
The LSTM-based Stacked Autoencoder (LSTM-

SAE) has the same structure as LSTM-AE, but with
stacked LSTM cells to solve the vanishing gradient
problem (Fig. 7).

Fig. 7. Structure of a LSTM based Stacked Autoencoder (LSTM-SAE)

Adding the “Repeat Vector” to the layer is nothing
but repeating the input n number of times. Whereas, the
“Time Distributed layer” takes the information from
the previous layer and creates a vector with a length of
the output layers.

4.	 RESULTS AND DISCUSSION
The experimental dataset for this study consists of

the daily price of Ruchi soya stock (in INR), obtained
from the Yahoo finance website (https://finance.yahoo.

Fig. 5. Structure of a Stacked Autoencoder (SAE)

75K.N. Singh et al. / Journal of the Indian Society of Agricultural Statistics 77(1) 2023  71–78

com/quote/RUCHI.NS?p=RUCHI.NS&.tsrc=fin-
srch), covering the period from January 1, 2015, to
February 24, 2023. The descriptive statistics of the soya
stock series used in the study are presented in Table 2
and depicted in Fig. 8. Table 3 includes statistical
tests to confirm the stationarity and linearity of the
considered data.

Fig. 8. Ruchi Soya stock price daily data (in INR) from Jan 01, 2015
through Feb 24, 2023

Table 2. Descriptive statistics of Soya stock price series (in INR)

Descriptive statistics Closing price (in INR)

Minimum 17.00

Mean 1571.21

Maximum 4765.00

Standard deviation 1080.63

Coefficient of variation (%) 68.77

Skewness 0.88

Kurtosis -0.08

Jarque-Bera 264.26**

A stationary series has a mean/variance, or both
remain constant across time. The Augmented Dickey-
Fuller (ADF), Phillip-Perron (PP), and Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) tests are used to
determine whether the data series is stationary or
not. The null hypothesis of the ADF test is that the
time series contains a unit root, indicating that it is
nonstationary. Soya price series failed to reject the null
hypothesis in this case study. Meanwhile, PP test defines
the null hypothesis that the time series is integrated of
order 1. Table 4 shows the results of these tests, which
substantiate the non-stationarity.

Table 3. ADF, PP and KPSS test results of daily price series of
soya stock

Price series ADF test PP test KPSS test

Statistic p-value Statistic value Statistic p-value

Soya stock
price series

-1.84 0.35 -2.42 0.28 4.95 0.01

Brock-Dechert-Scheinkman (BDS) test has
been employed for testing of nonlinearity. The null
hypothesis states that the series is independent and
identically distributed. The results of the test are shown
in Table 5, where it can be seen that the probability
values computed at points 0.50 to 2.00 confirm the
nonlinearity in soya stock market price data for the
embedding dimensions (number of lags) 2 and 3.

Table 4. BDS test for nonlinearity

Epsilon for close
points

Embedding dimensions p- value

2 3

0.5 σ 208.08 324.99 <0.0001

1.0 σ 144.16 176.64 <0.0001

1.5 σ 136.38 150.76 <0.0001

2.0 σ 121.97 122.33 <0.0001

The normalisation technique changes the form of
a data series by rescaling its values between 0 and 1.

() ()' /t t min max minX X X X X= − −

where Xmin, Xmax and Xt are the minimum,
maximum and observation at time t, respectively and

'
tX is the rescaled value. In python software, we have

used MinMaxScaler function of the Scikitlearn package
for this purpose.

All the above models are fitted by using Python
software. The model implementation on the dataset
(2017 data points) begins with partitioning of the data
series in to 70, 20 and 10 percent [i.e., training (1412
data points), validation (404 data points) and testing
(201 data points)]. The use of hyperparameters is an
important aspect of deep learning, as they can greatly
affect the performance of a model. In this case, the
hyperparameters selected were the number of lags
(1, 5, 10, 30), batch size (8, 16, 32, 64,128, 256), the
number of epochs (50, 100, 150, 200), the number of
hidden layers (1,2), the number of hidden units (8, 16,
32, 64, 128, 256) and dropout rate (0.0, 0.1, 0.2). These
were chosen based on their potential impact on the
model’s performance and were varied across a range of
values in order to find the optimal combination through
grid search cross validation technique. After obtaining
the best hyperparameters, training has to be done. The
optimal hyperparameter of the models has been given
in Table 5.

The batch size determines the number of samples
that are processed before the model’s weights are
updated. Larger batch sizes can lead to more stable

76 K.N. Singh et al. / Journal of the Indian Society of Agricultural Statistics 77(1) 2023  71–78

gradients but can also require more computational
resources. The number of epochs determines the number
of times the model is trained on the entire dataset. More
epochs can lead to better model performance, but can
also increase the risk of overfitting. The number of
input units determines the number of variables that the
model takes as input. A larger number of input units can
allow the model to capture more complex relationships
in the data, but can also lead to higher computational
costs.
Table 5. Optimal hyperparameter selection for several forecasting

models

Hyperparameters GRU LSTM Bi-
LSTM

LSTM-
AE

LSTM-
SAE

Batch size 32 128 64 128 64

No. of epochs
(Stopping criteria)

76 57 78 27 65

No. of hidden
layers

1, 2 2 1,2 1 2

No. of hidden units 32 32, 64 64 128 128, 64

Drop rate 0.1 0.1 0.2 0.3 0.2

No. of lags 10 5 10 30 10

Once the optimal combinations of hyperparameters
were found, the model was used for prediction. The use
of the early stopping method ensured that the model was
not trained for too long, which can lead to overfitting
and poor generalisation of new data. Henceforth,
the selection and tuning of hyperparameters is an
important step in building a machine-learning or deep
leaning model, and can greatly affect its performance.
It is important to note that the optimal hyperparameters
may not be the same for all datasets or tasks, and may
need to be determined on a case-by-case basis.

After obtaining the best parameters, all above stated
models were trained by using early stopping criteria
technique to avoid overfitting of the model. Then, to
know the impact of several deep trained models were
forecasted for 1 day, 5 day, 10 day and 30 days (Fig.s 9,
10,11 and 12). The result based on RMSE and MAPE
revealed that all the above stated models perform
well for a-head forecast but as time period increases
GRU, Bi-LSTM shows poor performance but LSTM,
LSTM-AE and LSTM-SAE performs well (Table 6).
During 10 day and 30-day head forecast, LSTM lose its
performance but LSTM-AE and LSTM-SAE captures
long memory property and also forecast at longer
horizon.

Table 6. Optimised results obtained by different models for the
Soya stock price series

Model 1 day Forecast 5-day Forecast 10-day Forecast 30-day Forecast

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

GRU 101.70 6.65 166.69 11.68 341.59 24.29 350.31 25.36

LSTM 30.29 1.27 137.129 9.30 206.93 14.56 349.47 25.05

Bi-
LSTM

114.28 6.11 153.94 8.01 342.91 23.48 437.81 31.11

LSTM-
AE

51.18 3.18 163.43 10.88 108.25 7.01 105.60 7.43

LSTM-
SAE

39.34 2.40 113.92 6.82 104.85 6.71 84.27 5.64

Fig. 9. One day ahead forecast using five different models for test data

Fig. 10. Five days ahead forecast by using five different
models for test data

Fig. 11. Ten days ahead forecast by using five different models for test data

77K.N. Singh et al. / Journal of the Indian Society of Agricultural Statistics 77(1) 2023  71–78

LSTM Stacked Autoencoders (LSTM-SAEs) are
a powerful tool for time series forecasting, as they
can capture long-term dependencies using RNNs,
especially LSTM cells. Moreover, SAEs employ an
encoder that compresses multivariate time series into
a smaller latent space, identifying critical features
like trend, seasonality, and chaotic patterns while
filtering out irrelevant or noisy data. By reducing the
dimensionality of the input through compression into a
smaller representation in the latent space, autoencoders
make it easier to learn and model complex patterns in
the time series data. As a result, the model can produce
more precise forecasts and achieve better overall
performance by capturing both temporal dependencies
and chaotic patterns in the time series data.

5.	 CONCLUSION
The goal of this study was to forecast Ruchi soya

stock price series based on deep learning models. From
our study it can be inferred that the proposed model
LSTM-SAE model outperformed the other competitive
model like LSTM-AE, LSTM, Bi-LSTM, and GRU.
In practice, our findings can be helpful to researchers
and policy makers who determine national economic
policies related to edible oil marketing because Ruchi
soya stock reveal important trends for the Indian
economy. Moreover in this study, hyperparameter
optimisation was performed using only a grid search
cross validation technique, which is a commonly
used machine learning/ deep learning algorithm, but
there is also a research gap to increase the reliability
of prediction by considering additional optimisation
algorithms.

Code availability: Code will be available on
request to the corresponding author.

Fig. 12. Thirty days ahead forecast by using five different
models for test data

REFERENCES
Araujo, R.D.A., Oliveira, A.L. and Meira, S. (2015). A hybrid model

for high-frequency stock market forecasting. Expert Systems with
Applications, 42(8), 4081-4096.

Bao, W., Yue, J. and Rao, Y. (2017). A deep learning framework for
financial time series using stacked autoencoders and long-short
term memory. PloS one, 12(7), e0180944.

Cho, K., Van Merrienboer, B., Bahdanau, D. and Bengio, Y. (2014).
On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259. (https://arxiv.org/
abs/1409.1259 was available for access on May 31, 2022)

Chong, E., Han, C. and Park, F.C. (2017). Deep learning networks
for stock market analysis and prediction: Methodology,
data representations, and case studies. Expert Systems with
Applications, 83, 187-205.

Gianniotis, N., Kugler, S.D., Tino, P. and Polsterer, K.L. (2016).
Model-coupled Autoencoder for time series visualisation.
Neurocomputing, 192, 139-146.

Guo, Y., Liao, W., Wang, Q., Yu, L., Ji, T. and Li, P. (2018, November).
Multidimensional time series anomaly detection: A gru-based
gaussian mixture variational autoencoder approach. In Asian
Conference on Machine Learning (97-112).

Haykin, S. (2009). Neural networks and learning machines, 3/E.
Pearson Education India.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory.
Neural computation, 9(8), 1735-1780.

Homayouni, H., Ghosh, S., Ray, I., Gondalia, S., Duggan, J. and Kahn,
M.G. (2020). An autocorrelation-based lstm-autoencoder for
anomaly detection on time-series data. In 2020 IEEE International
Conference on Big Data (Big Data) (5068-5077).

Jaiswal, R., Jha, G.K., Kumar, R.R. and Choudhary, K. (2021). Deep
long short-term memory-based model for agricultural price
forecasting. Neural Computing and Applications, 34, 4661–4676.
https://doi.org/10.1007/s00521-021-06621-3

Jiang, S., and Durlofsky, L.J. (2021). Data-space inversion using
a recurrent autoencoder for time-series parameterisation.
Computational Geosciences, 25, 411-432.

Jung, G., and Choi, S.Y. (2021). Forecasting foreign exchange volatility
using deep learning autoencoder-LSTM techniques. Complexity,
https://doi.org/10.1155/2021/6647534

Kieu, T., Yang, B., Guo, C., and Jensen, C.S. (2019, August). Outlier
Detection for Time Series with Recurrent Autoencoder Ensembles.
In IJCAI (2725-2732).

Li, L., Yan, J., Wang, H., and Jin, Y. (2020). Anomaly detection of
time series with smoothness-inducing sequential variational auto-
encoder. IEEE transactions on neural networks and learning
systems, 32(3), 1177-1191.

Liguori, A., Markovic, R., Dam, T.T.H., Frisch, J., van Treeck, C.,
and Causone, F. (2021). Indoor environment data time-series
reconstruction using autoencoder neural networks. Building and
Environment, 191, 107623.

Liu, P., Sun, X., Han, Y., He, Z., Zhang, W., and Wu, C. (2022).
Arrhythmia classification of LSTM autoencoder based on time
series anomaly detection. Biomedical Signal Processing and
Control, 71, 103228.

Mohanty, D.K., Parida, A.K., and Khuntia, S.S. (2021). Financial market
prediction under deep learning framework using autoencoder and

78 K.N. Singh et al. / Journal of the Indian Society of Agricultural Statistics 77(1) 2023  71–78

kernel extreme learning machine. Applied Soft Computing, 99,
106898.

Nguyen, N., and Quanz, B. (2021, May). Temporal latent auto-encoder:
A method for probabilistic multivariate time series forecasting.
In Proceedings of the AAAI Conference on Artificial Intelligence,
35(10), 9117-9125.

Noering, F.K.D., Schroeder, Y., Jonas, K. and Klawonn, F. (2021).
Pattern discovery in time series using Autoencoder in comparison
to nonlearning approaches. Integrated Computer-Aided
Engineering, 28(3), 237-256.

Pan, Z., Wang, Y., Wang, K., Chen, H., Yang, C. and Gui, W. (2022).
Imputation of missing values in time series using an adaptive-
learned median filled deep autoencoder. IEEE Transactions on
Cybernetics, 53(2), 695-706. DOI: 10.1109/TCYB.2022.3167995.

Provotar, O.I., Linder, Y.M. and Veres, M.M. (2019, December).
Unsupervised anomaly detection in time series using lstm-based
autoencoders. International Conference on Advanced Trends in
Information Theory (ATIT), 513-517.

Richard, G., Grossin, B., Germaine, G., Hebrail, G. and de Moliner,
A. (2020). Autoencoder-based time series clustering with energy
applications. arXiv preprint arXiv:2002.03624.

Sagheer, A., and Kotb, M. (2019). Unsupervised pre-training of a deep
LSTM-based stacked autoencoder for multivariate time series
forecasting problems. Scientific reports, 9(1), 1-16.

Shumway, R.H., Stoffer, D.S. and Stoffer, D.S. (2000). Time series
analysis and its applications (3).New York: springer.

Terefe, T., Devanne, M., Weber, J., Hailemariam, D. and Forestier, G.
(2020, November). Time series averaging using multi-tasking
autoencoder. 32nd International Conference on Tools with
Artificial Intelligence (ICTAI), 1065-1072

Von Schleinitz, J., Graf, M., Trutschnig, W. and Schröder, A. (2021).
VASP: An autoencoder-based approach for multivariate anomaly
detection and robust time series prediction with application in
motorsport. Engineering Applications of Artificial Intelligence,
104, 104354.

Wei, Y., Jang-Jaccard, J., Xu, W., Sabrina, F., Camtepe, S. and Boulic,
M. (2023). Lstm-autoencoder based anomaly detection for indoor
air quality time series data. Sensors.DOI: https://doi.org/10.1109/
JSEN.2022.3230361

Xie, L., and Yu, S. (2021). Unsupervised feature extraction with
convolutional Autoencoder with application to daily stock
market prediction. Concurrency and Computation: Practice and
Experience, 33(16), 6282.

Wu, K., Liu, J., Liu, P., and Yang, S. (2019). Time series prediction
using sparse Autoencoder and high-order fuzzy cognitive maps.
IEEE transactions on fuzzy systems, 28(12), 3110-3121.

Xu, X., and Ren, W. (2022). A hybrid model of stacked Autoencoder
and modified particle swarm optimisation for multivariate chaotic
time series forecasting. Applied Soft Computing, 116, 108321.

Yin, C., Zhang, S., Wang, J., and Xiong, N.N. (2020). Anomaly detection
based on convolutional recurrent Autoencoder for IoT time series.
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
52(1), 112-122.

Yu, W., Kim, I.Y., and Mechefske, C. (2021). Analysis of different RNN
autoencoder variants for time series classification and machine
prognostics. Mechanical Systems and Signal Processing, 149,
107322.

Zha, M. (2022). Time series generation with masked Autoencoder.
arXiv preprint arXiv:2201.07006.

Zhang, C., Li, S., Zhang, H., and Chen, Y. (2019). Velc: A new
variational autoencoder based model for time series anomaly
detection. arXiv preprint arXiv:1907.01702.

Zhang, J., and Dai, Q. (2022). Latent adversarial regularised
Autoencoder for high-dimensional probabilistic time series
prediction. Neural Networks, 155, 383-397.

Zhao, X., Han, X., Su, W., and Yan, Z. (2019, November). Time series
prediction method based on convolutional Autoencoder and
LSTM. In 2019 Chinese Automation Congress (CAC), 5790-5793.

Zhou, H., Yu, K., Zhang, X., Wu, G., and Yazidi, A. (2022). Contrastive
Autoencoder for anomaly detection in multivariate time series.
Information Sciences, 610, 266-280.

APPENDIX
Python code for the LSTM stacked autoencoders
(LSTM-SAEs) for multivariate time series
forecasting

X_train, y_train = split_series(train.values,n_past, n_
future)

X_train = X_train.reshape((X_train.shape[0], X_train.
shape[1],n_features))

y_train = y_train.reshape((y_train.shape[0], y_train.
shape[1], n_features))

X_test, y_test = split_series(test.values,n_past, n_future)
X_test = X_test.reshape((X_test.shape[0], X_test.

shape[1],n_features))
y_test = y_test.reshape((y_test.shape[0], y_test.

shape[1], n_features))
encoder_inputs = tf.keras.layers.Input(shape=(n_past,

n_features))
encoder_l1 = tf.keras.layers.LSTM(128, return_

sequences = True, return_state=True)
encoder_outputs1 = encoder_l1(encoder_inputs)
encoder_states1 = encoder_outputs1[1:]
encoder_l2 = tf.keras.layers.LSTM(128, return_

state=True)
encoder_outputs2 = encoder_l2(encoder_outputs1[0])
encoder_states2 = encoder_outputs2[1:]
decoder_inputs = tf.keras.layers.RepeatVector(n_future)

(encoder_outputs2[0])
decoder_l1=tf.keras.layers.LSTM(128, return_

sequences=True)(decoder_inputs,initial_state = encoder_
states1)

decoder_l2 = tf.keras.layers.LSTM(128, return_
sequences=True)(decoder_l1,initial_state = encoder_states2)

decoder_outputs2 = tf.keras.layers.TimeDistributed(tf.
keras.layers.Dense(n_features))(decoder_l2)

model_e2d2 = tf.keras.models.Model(encoder_
inputs,decoder_outputs2)

model_e2d2.summary()

