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SUMMARY
Wavelet-based multiresolution analysis can decompose a time series into a set of components. It can improve the accuracy of forecasts. The wavelet-
based multiresolution analysis augmented method (Zhang, 2017) is applied to expand wheat yield in Punjab, Haryana, and Bihar, India during the 
period1966 to 2017 (52 years)into a group of hierarchical series in a meaningful manner. Essentially, a regression model based on the Ordinary Least 
Squares (OLS) technique is used to reconcile the forecasts at different level of decomposition. Therefore, predictions at higher-level are computing by 
taking sum of lower-level predictions. The forecasting has been done for different rolling windows and different forecast horizons. The improvement 
in forecasting performance of the multi-step forecasts obtained using Multiresolution analysis has been shown in terms of minimum values of Mean 
absolute error (MAE) and Root mean square error (RMSE). Moreover, a comparative study for predictive performance is also carried out between 
wavelet-based Multiresolution augmented method and corresponding conventional approach i.e. autoregressive integrated moving average (ARIMA) 
model and wavelet based artificial neural network (Wavelet-ANN) hybrid model. It revealed that the wavelet based Multiresolution augmented 
method outperforms the other approaches for the data under consideration.
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1.	 INTRODUCTION
Time-series forecasting has been emerged as a 

basis for manual and automatic planning in many real 
life application (De Gooijer and Hyndman, 2006). 
Time series can often be disaggregated in a hierarchical 
structure using attributes such as geographical location, 
product type etc. A hierarchical time series comprises 
of multiple times series in which the high-level 
observations are combined according to low-level data. 
Forecasting by conventional approaches use either 
a top-down or bottom-up method or a combination 
of the two. In top-down approach, the top-level 
data is forecasted first, and then these forecasts are 
disaggregated based on historical proportions; On the 
other hand, in bottom-up approach, the bottom-level 
data are forecasted first, and then additional data are 
included to obtain the top-level forecasts (Claeskens 
et al., 2016; Del Negro et al., 2016).If the hierarchical 
structure of the data is ignored and forecasting is done 
for all series at all levels independently, it may lead 
to undesirable consequence. Hyndman et  al. (2011) 

developed an algorithm to compute the final forecasts 
by adjusting the independent forecasts. This concept 
for hierarchical time series forecasting can be extended 
to any univariate time series data. This forecasting 
algorithm has been applied by Pal and Paul (2016) 
for forecasting sorghum production in India; Mitra 
et al. (2017) used hierarchical time series approach to 
forecast oilseeds and pulses production in India.

To understand the structures of data, especially data 
including high-frequency components like financial 
time series, carrying out time-domain analysis is not 
adequate (Masset, 2008). In some sense one needs to 
look both frequency and time domain to catch real 
characteristic of data. Spectral analysis and wavelet 
analysis are examples of the frequency-domain analysis. 
The modern wavelet theory has taken shape during the 
late twentieth century (Boggess and Narcowich 2009). 
Ghosh et al. (2010) applied discrete wavelet transform 
(DWT) and multiresolution analysis (MRA) of India’s 
monsoon rainfall data to analyze the behaviour of 
trend in terms of different times and scales. Paul et al. 
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(2011) studied DWT for estimation of trend in India’s 
monsoon rainfall. Paul et  al. (2013) demonstrated 
that forecasting based on wavelet is more accurate 
than that of the usual Autoregressive moving average 
(ARIMA) model. Kılıç and Uğur (2018) applied MRA 
to decompose and model the S&P500 time series.

Wavelet-based MRA decomposes a series into a 
set of series with hierarchical structure (Gencay et al., 
2001). Smooth and details sequences of the time series 
at difference scales are obtained in MRA. The traditional 
univariate time series prediction models can be applied 
to the raw data and their decomposed components 
independently, followed by combining and reconciling 
these forecasts according to the hierarchical structure. 
This decomposition method can improve the accuracy 
of forecasts of original time series data. Zhang et al. 
(2017) proposed a wavelet-based Multiresolution 
analysis augmented method to forecast univariate time 
series data.

In the present study, above approach has been 
applied in wheat yield data. Wheat is one of the most 
important cereal crops. India ranks second after China 
in terms of wheat production in the world. Being one of 
the staple foods in India, accurate forecasting of wheat 
yield is very important. There are few works available 
in literature concerning prediction of wheat yield based 
on time series data (Paul et al., 2013; Paul et al. 2014; 
Paul, 2015). But none of these study has used the 
approach of MRA. The present study investigates the 
performance ofwavelet-based MRA augmented method 
using yearly wheat yield data in Punjab, Haryana and 
Bihar in India.

2.	 METHODOLOGY

2.1	 Hierarchical time series forecasting
Let us assume that we have multiple level hierarchy, 

the completely aggregated series are denoted by level 
0, the first level of disaggregation is denoted by level 
1,and level Kcontains the most disaggregated time 
series. For easy identification of the individual series 
and the level of disaggregation, a sequence of letters is 
used: A denotes series A at level 1; AA denotes series A 
at level 2 within series A at level 1 and so on.

Assuming that time series observations are recorded 
at times 1 2 , , ,t n= … , and we are interested in forecasting 
each series at each level at times 1 2 , , ,t n n n h= + + … + . 

Here, we represent the observation on series X as ,X ty . 
Thus, ,AB ty is the value of series AB at time t. ty  denotes 
aggregate of all series at time t. Therefore,

,t ij t
i

y y=∑ , , ,i t ij t
j

y y=∑ , , ,ij t ijk t
k

y y=∑ , 

, ,ijk t ijkl t
l

y y=∑ ,

and so on. So, the observations at higher levels can 
be obtained by taking sum of the series at lower levels.

Let im  denotes the total number of series at level i 
( 0 1 2, , , , )i K= … . So 1i im m −>  and the total number of 
series in the hierarchy is 0 1 Km m m m= + +…+ .

In terms of matrix notation, let ,i ty  denotes 
the observations at level i and time t and 

'
1, ,, ,...,t t t k ty =  y y y . Here,

,t k t=y Sy � (1)

where S  is a “summing” matrix of order Km m×  
used to aggregate the lowest level series.

The main interest lies on working with forecasts 
rather than the actual series, in hierarchical forecasting,. 
Suppose that ( ),ˆ X ny h  denotes h-step-ahead forecasts 
for each individual series Xy . These forecasts are 
based on 1 2, , ,t n= …  and hence these are the forecasts 
for time n+h. Therefore, ( ),ˆ AA ny h  denotes the h-step-
ahead base forecast of series AAy  using the sample 

1 2, , ,, , ,AA AA AA ny y y… . For level i, h-step-ahead base 
forecasts are denored by ( ),ˆ i n hy  and the h-step-ahead 
base forecasts for the whole hierarchy are ( )ˆ n hy , 
which contains all of the base forecasts stacked in the 
same order as ty .

2.2	 Wavelet transform and Multiresolution analysis
Wavelet analysis expands a function in terms of 

wavelets basis, by means of translations and dilations 
of mother wavelet. Multiresolution analysis (MRA) 
is used to distinct different frequency components. 
It is regarded as a mathematical microscope of the 
underlying signal (Burke, 1994). The dilation ( )D  and 
a translation ( )T  operators are used to define MRA. 
MRA decomposes any square-integrable function in 
detailed and smooth parts by using wavelet and scaling 
functions, respectively.
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2.3	 Multiresolution analysis augmented method
This methodology is based on Hyndman et  al. 

(2011) and Zhang et al. (2017). Essentially, a regression 
model based on Ordinary Least Squares (OLS) 
technique is used to join the forecasts at different 
wavelet-decomposed series. The algorithm has four 
steps. First, MRA is applied to decompose the raw data 
into wavelet details and smooth, { 1S , 1D , 2S , 2D } as 
shown in Fig 1.

Raw data, x

S1 D1

S2 D2

Fig. 1. Wavelet decomposition tree

Next, for a given training sample with size T
, a conventional univariate model can be used to 
conduct first-round forecasts at all hierarchical 
levels independently with a horizon h . For example,

1 1 2 2

'ˆ ˆˆ , , , ,ˆ ˆ ˆ
T hY X S D S D+

 =    can be predicted by 
Autoregressive (AR) model of order 1, where T̂ hY +  has 
a dimension 5-by-1 and time index T h+ .

Due to presence of an explicit hierarchical 
structure in the wavelet-decomposed components, 
the variable on each scale can be expressed as a 
linear combination of the lowest level (base-level) 
variables, [ ]2 2 1

', ,S D Dβ = , which have on descendants. 
For example, 2 2 1X S D D= + + , and 1 2 2S S D= + . A 
“summing” matrix Z , with entries of [ ]0 1,  can capture 
the linear relationship in a given hierarchy.

2 2 1 2

1 2 2 2

1 1 1

2 2

2 2

1 1 1
1 1 0
0 0 1
1 0 0
0 1 0

X S D D S
Y S S D D Z

D D D
S S
D D

β

   
             + +         = = + = =                       
   
    �(2)

In most univariate cases, the first-round 
independent forecasts, 1 1 2 2

'ˆ ˆˆ , , , ,ˆ ˆ ˆ
T hY X S D S D+

 =   , do not 
have the property of same hierarchical structure as the 
original sample, Y , i.e., ˆ

T̂ h T hY Zβ+ +≠ . Therefore, those 

forecasts are not fundamentally consistent with each 
other.

As the predictions at different hierarchical levels 
are independent, the prediction result vector, T̂ hY + , is 
regressed on the corresponding summing matrix, Z . 
The objective of this step is to identify the set of base-
level forecasts 

2 2 1

'
, ,T h S D Dβ +  =  

    , that minimizes the 
squared deviation from the first round of independent 
forecasts.

( ) ( )argmin
'ˆ ˆ

T h T h T h
b

Y Zb Y Zbβ + + += − −

� (3)

Thus, T hβ +
 , can be estimated using OLS. To this 

end, the refined optimal forecasts at all hierarchical 
levels can be computed as T h T hY Zβ+ +=  . Among 
these forecasts, one is particularly interested in the 
accuracy of the refined forecasts at the top level, 

2 2 1, , ,T h T h T h T hX S D D+ + + += + +    which corresponds to the 
original time series, X .

2.4	 Forecast evaluation
The performance of different forecasting 

models is compared using MAE and RMSE criteria. 
Mathematically MAE and RMSE are defined in Eq. (4) 
and Eq. (5) respectively.

MAE = 
1

1 1 2, ,ˆ , ,
 

h

t t
t

y y t h
h =

− = …∑ � (4)

RMSE ( )2

1

1 
h

t t
t

y y
h =

= −∑ � (5)

where ty  is the actual observation for the time t  
and ˆ ty  is the forecast value of the series for the same 
time; h  denotes the forecast horizon.

3.	 ILLUSTRATIONS

3.1	 Data
To demonstrate the forecasting performance of 

the multi-resolution augmented method, yearly wheat 
yield data of Punjab, Haryana and Bihar state in India 
have been collected from Directorate of Economics 
and Statistics, Ministry of Agriculture and Framers 
Welfare, Government of India during the period 1966 
to 2017 (52 years). The dataset is divided into two parts: 
training set used for model building and estimation; 
testing set used for model validation and evaluation. 
Out of total 52 observations, 44 observations (around 
85%) have been kept for model building and remaining 
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8 observations (around 15%) for validation of the 
model (Khandelwal et al. 2015).

3.2	 Application of Multiresolution analysis
A rolling window approach is applied to generate 

a sequence of similar out-of-sample predictions. The 
time plots of the dataset for three states are given in 
Fig 2. The plot exhibits an overall trend pattern in time 
series data. Wavelet-based multiresolution analyses is 
applied to decompose the raw yield data into wavelet 
details (D1, D2) and smooths parts (S1) using a 
level-2 Maximal Overlap Discrete Wavelet Transform 
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Fig. 2. Time plot of wheat yield data

(MODWT) with a Haar filter and it is exhibited in Fig 3 
to Fig 5 for Punjab, Haryana and Bihar respectively. The 
smooth part i.e. S1 is actually the global trend for the 
series under consideration. The wavelet coefficients are 
related to differences (of various order) of (weighted) 
average values of portions of original series concentrated 
in time. Coefficients at the below(top) provide “high 
frequency” (“low frequency”) information. Wavelet 
coefficients vary over time and indicates changes in the 
data at different time-epochs. The vertical clustering of 
large coefficients represents possible abnormal jumps.
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Fig. 3. MRA by level-2 MODWT with Haar filter at Punjab
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Fig. 4. MRA by level-2 MODWT with Haar filter at Haryana
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2.3 Results and Discussions
The accuracy of the forecasts was compared 

between the methods with and without MRA using 
the same model. The benchmark univariate time 
series models include an optimal Autoregressive 
integrated moving average (ARIMA) model that uses 
the automatic algorithm of Hyndman and Khandakar 
(2008). ARIMA model has been fitted to the original 
data as well as the wavelet decomposed data using R 
software package. Moreover, Wavelet based artificial 
neural network (Wavelet-ANN) hybrid model (Paul 
et  al. 2020) has been fitted to the original data for 
empirical comparison. Rolling window forecasts are 
obtained with 8, 10, and 12 periodsas the window 
length (Hassler,2019).The prediction performance 
of the multi-step ahead forecasts obtained from the 
conventional model and Multiresolution analysis 
augmented method is carried out based on MAE and 
RMSE as described in equation 4 and 5. To save space, 
the results of prediction accuracy of two competing 
models for the Bihar State have been shown Tables 1 
and 2. The results obtained for other two states have 

also indicates same pattern in terms of accuracy of 
prediction. The last columns in Tables 1 and 2 represent 
the average MAE and RMSE values among all h -step 
forecasts. Both tables indicate the outperformance of 
ARIMA-MRA model over the usual ARIMA model 
as well as hybrid Wavelet-ANN technique in terms of 
lower MAE and RMSE values. It is to be noted that, 
ARIMA model has performed better than the other 
model as far as short term forecast is concerned i.e. up 
to two steps ahead. Otherwise, for all other horizons, 
ARIMA model performed poorly.

4.	 CONCLUSIONS
In order to understand the underlying characteristics 

of the time series under consideration both time as well 
as frequency domain analysis is desirable. Spectral 
analysis and wavelet analysis are examples of the 
frequency-domain analysis. To analyze the series with 
specific scales and time intervals, wavelet followed 
by MRA can be implemented. The combination 
forecast perform well as compared to the conventional 
hierarchical approaches. This forecast approach can be 
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Fig. 5. MRA by level-2 MODWT with Haar filter at Bihar
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Table 1. Forecast performance (MAE) for wheat yield data with different forecast horizons and rolling windows

Models
Forecast horizons

1 2 3 4 5 6 7 8 Avg

8-periodrolling window

ARIMA (0,1,1) 479.52 603.82 523.14 165.66 364.07 451.98 663.67 657.31 488.65

ARIMA-MRA 516.41 614.16 515.93 77.85 340.09 408.23 594.04 557.75 453.06

Wavelet-ANN 490.97 618.42 583.6 118.22 348.2 415.01 611.85 558.32 468.07

10- period rolling window

ARIMA (0,1,1) 408.41 565.90 514.13 295.86 368.04 428.01 650.78 637.15 483.53

ARIMA-MRA 483.70 585.94 471.28 272.47 309.90 387.77 533.65 498.59 442.91

Wavelet-ANN 432.55 497.91 448.64 481.88 404.32 431.80 566.00 502.74 470.73

12- period rolling window

ARIMA (0,1,1) 512.36 487.69 439.58 389.58 427.66 352.78 342.37 286.86 404.86

ARIMA-MRA 554.20 502.18 421.67 320.47 399.02 319.81 284.76 254.17 382.03

Wavelet-ANN 544.32 531.8 429.45 352.74 407.42 339.4 294.59 263.47 395.40

Table 2. Forecast performance (RMSE) for wheat yield data with different forecast horizons and rolling windows

Models
Forecast horizons

1 2 3 4 5 6 7 8 Avg

8-periodrolling window

ARIMA (0,1,1) 487.13 614.28 572.50 367.31 427.76 543.40 668.36 657.31 542.26

ARIMA-MRA 529.48 664.67 563.43 86.70 407.25 486.68 597.54 557.75 486.69

Wavelet-ANN 522.55 697.91 569.64 281.88 414.32 531.80 596.00 592.74 525.85

10- period rolling window

ARIMA (0,1,1) 418.59 614.96 617.39 385.40 424.35 523.28 653.89 637.15 534.37

ARIMA-MRA 521.47 649.30 554.71 363.36 405.27 440.02 537.49 498.59 496.27

Wavelet-ANN 525.89 674.08 597.02 371.76 416.70 502.23 560.30 545.15 524.14

12- period rolling window

ARIMA (0,1,1) 495.23 653.27 563.52 578.63 453.28 542.55 481.64 423.52 523.95

ARIMA-MRA 564.81 682.98 502.45 480.56 410.94 518.32 402.67 358.61 490.17

Wavelet-ANN 496.25 677.94 536.55 555.98 442.94 535.18 469.32 418.33 493.51

extended to any univariate time series data. A wavelet-
based MRA can be used to decompose the original 
univariate time series into a group of components 
(wavelet details and smooth) having hierarchical 
structure. Therefore, the optimal combination forecast 
approach can be applied to a univariate time series. 
The prediction accuracy obtained by different methods 
is compared. The conventional univariate models 
are considered as benchmark. For every univariate 
model, a pair of forecast is obtained; one based on 
raw data and other based on a MRA. A comparison of 
these forecasts are used to test the accuracy of MRA 
augmented method and any gain in forecast accuracy is 
due to wavelet decomposition method. The improved 

forecasting performance of the Multiresolution analysis 
augmented forecasting method has been demonstrated 
using real datasets viz. the yearly wheat yield in Punjab, 
Haryana and Bihar state of India. It has been found that 
the Multiresolution analysis based augmented method 
outperforms the conventional ARIMA as well as hybrid 
Wavelet-ANN model in terms of lower MAE and 
RMSE values.
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