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1.	 INTRODUCTION
When making decisions about production and 

marketing that potentially have a financial impact, 
farmers rely on price projections. Time series 
forecasting is the projection of future values using 
historical records, data and various models. Choosing 
a universally accepted model for forecasting precisely 
the price series of commodities like onion is one of the 
most challenging tasks because of the simultaneous 
existence of seasonality, non-linearity and complexity. 
A lot of agricultural items have been damaged recently 
owing to various climatic changes, which has caused 
many issues around the world. It’s interesting how 
noisy and fluctuating the pricing data for many 
agricultural goods are by their very nature. This is due 
to the fact that agricultural commodity prices react 
quickly to changes in supply and demand situations, 
both actual and speculative; additionally, weather-
related fluctuations in farm productivity make the issue 
worse.

Volatility is a series’ abrupt, unexpected rise or 
collapses which could enrage stakeholders. It is a well-
known truth that price volatility can make agricultural 
revenue unstable and prevent farmers from making 
investments and making the best use of their resources. 
It may ultimately cause the agriculture sector to lose 
access to vital resources. The series is said to be volatile 
when a few error terms are larger than the others and 
are responsible for the unique behaviour of the series, 
such a phenomenon is known as heteroscedasticity. 
The popular and non-linear autoregressive conditional 
heteroscedastic (ARCH) model was developed by Engle 
(1982) to cope with heteroscedasticity. Bollerslev (1986) 
expanded the model and created the Generalized ARCH 
(GARCH) model for a sparse representation of ARCH. 
Time Delay Neural Network models can be useful for 
non-linear processes that have an unknown functional 
relationship and, as a result, are difficult to fit. It is a 
specific general-purpose learning algorithm that deals 
with the process of building the relationship between 
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the input and output variables. The behaviour of the 
central nervous system of the human brain is mimicked 
by computational techniques called neural network 
models. They are a group of data-driven, generalized 
non-linear, nonparametric statistical approaches. A 
supervised machine learning approach called Support 
Vector Machine (SVM) is used for both classification 
and regression. Although we also refer to regression 
concerns, categorization is the most appropriate term. 
Finding a hyperplane in an N-dimensional space that 
clearly classifies the data points is the goal of the 
SVM method. The number of features determines the 
hyperplane’s size. The hyperplane that depicts the most 
significant gap or margin between the two classes is a 
logical option for the best hyperplane. When searching 
for the ideal hyperplane to maximize the margin, the 
SVM algorithm has the ability to ignore outliers.

Long Short Term Memory is a deep learning model 
in which the activation patterns in the network change 
once per time step, analogous to how physiological 
changes in synaptic strengths store short-term 
memories. The connection weights and biases in the 
network change once per episode of training, analogous 
to how physiological changes in synaptic strengths store 
long-term memories. The “long short-term memory” of 
the LSTM architecture is intended to give RNN a short-
term memory that can endure thousands of time steps. 
Since there may be lags of uncertain length between 
significant occurrences in a time series, LSTM networks 
are well-suited to categorizing, processing, and making 

predictions based on time series data. Different variants 
of LSTM like Deep LSTM, Stacked LSTM, Bi-LSTM, 
etc. are known in literature.

2.	 DATA AND METHODOLOGY

Data
In this study, two datasets have been used for 

evaluating and comparing forecast performance of 
different individual models. We have taken weekly 
price series of onion (Rs./quintal) of Azadpur market 
of Delhi and Kolhapur market of Maharashtra. The 
dataset was obtained from AGMARK website (https://
agmarknet.gov.in/) for the period of 2010 to 2018.

For avoiding over fitting of the model and 
evaluating the model with good accuracy, the dataset 
was split into training and testing sets. The training 
dataset has been used for building model and in-sample 
prediction whereas the testing dataset has been used for 
validation purpose and out-sample forecasting. In case 
of Azadpur price series, there are total 469 observations 
(457 for training and 12 for testing) and there are 
412 observations in Kolhapur price series (400 for 
training and 12 for testing). The last 12 weeks data 
has been used for validation of model. In this study, 
all estimation procedures have been done by using 
R software. Two unit-root tests such as Augmented 
Dickey Fuller test and Phillips-Perron test have been 
used to test stationarity of time series. 

Fig. 1. Graphical plot of the weekly price series data for both the markets
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3.	 METHODOLOGY

Augmented Dickey Fuller (ADF) Test
If the mean and variance of the stochastic time 

series data are constant over the time, then the time 
series is said to be stationary. It means that there is no 
growth or decline in the data. The data must be roughly 
horizontal along the time axis. Some of the statistical 
tests for testing stationarity of time series are Augmented 
Dickey Fuller (ADF) Test and Phillips-Perron test (PP 
test).The ADF test consists of estimating the following 
regression equation:

1 2 1
1

h

t i t i t
i

y a a t y b y eδ − −
=

∆ = + + + +∑t

Where, 1t ty y y −∆ = −t , 1 2,a a  and ib  are the 
parameters of regression model, h is length of the lag, 

1δ ρ= −  and 1 1ρ− ≤ ≤ .
In ADF test, whether the time series having a unit 

root or not, which means whether the time series under 
consideration is stationary or not has been tested.

0H  : 0δ = , Time series is non-stationary

1H : 0δ ≠ , Time series is stationary
Based on p-value of the test, we decide whether the 

data is stationary or not.
Phillips-Perron test (PP test) is a non-parametric 

test to check the stationarity of the time series data 
with null hypothesis of a unit root that explicitly allows 
for weak dependence and heterogeneity of the error 
process.
GENERALISED AUTOREGRESSIVE 
CONDITIONAL HETEROSCEDASTICITY 
(GARCH)

The conditional variance in the GARCH model is 
also a linear function of its own lags. This model, like 
ARCH, is a weighted average of previously squared 
residuals, but unlike ARCH, it contains decreasing 
weights that never reach zero.

In our study, Lagrange multiplier test has been 
applied to detect the presence of autoregressive 
conditional heteroscedastic (ARCH) effect before 
going to fit the GARCH model.

The ARCH (q) model for the series (ɛt) is given by

( )1|   ~  N 0,  t t thε −Ψ � (1)
here Ψt-1 denotes information available up to time 
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required to be satisfied to ensure non-negativity and 
finite unconditional variance of stationary { }tε  series

Bollerslev (1986) proposed the Generalized ARCH 
(GARCH) model in which conditional variance is also 
a linear function of its own lags and has the following 
form
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A sufficient condition for the conditional variance to be 
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To express GARCH model in terms of ARMA 

model, denote tη  = -  th .
Then from eq. (3) 

2
tε  = 

� (4) 
Thus a GARCH model can be regarded as an 

extension of the ARMA approach to squared series 
{‌ 2

tε  }.

TIME DELAY NEURAL NETWORKS (TDNN) 
The main disadvantage of the linear model like 

ARIMA is that it does not capture the non-linear 
component of time series data, which is bounded by 
residuals in the case of non-linear time series. Machine 
learning techniques will be more appropriate in dealing 
with such a situation. Time Delay Neural Networks 
(TDNN) are an efficient alternative forecasting model 
for non-linear time series data (Zhang et  al., 1998). 
The term “Neural Network” models comes from their 
ability to mimic the behaviour of the human brain’s 
central nervous system. They are a type of nonlinear, 
nonparametric, and data-driven statistical method.

The design consists of an input layer that accepts 
outside data, one or more hidden layers that provide 
non-linearity to the model, and an output layer that 
outputs the desired result. The ability of TDNN to  
model nonlinear systems and its high forecasting 
accuracy increased their appeal for time series 
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forecasting significantly. A neural network with one 
hidden layer can approximate any non-linear function 
given enough hidden nodes and training data points.

ARCHITECTURE OF TDNN
A TDNN model is made up of numerous 

interconnected neurons. A standard TDNN model 
consists of one input layer, one output layer, and one or 
more hidden layers. There are nodes in each layer, such 
as input nodes, output nodes, and hidden nodes. Each 
layer is distinguished by the fact that its output is the 
weighted sum of its inputs.

*i ij j i
j

u w output v= +∑

where iu  is the value of net input of ith node, ijw  is 
the weights connecting jth to ith neuron, iv  denotes bias 
for ith node. Many non-linear functions are available 
in literature to be used as an activation functions by 
researchers. The two mostly widely used activation 
functions are identity function and sigmoid function.

( )
1, 0
0, 
netinput

netinput
otherwise

≥
∅ = 



where ∅  and g  represents identity and logistic 
activation function.

In this study, feed-forward time-delay neural 
network (TDNN) with single hidden layer will be 
employed as a multi-scale learning tool for fitting the 
training data. The general expression for a TDNN with 
single hidden layer is given by (Jha and Sinha, 2014)

( )( )1 0 0

q p
t j ij t ij i

y g f yα β+ −= =
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where 1ty +  is the predicted value for 
ty  at time t, ( )0,1 , 2,   .  .  ., j j qα =  and 

( ) 0,1 , 2,   .  .  ., ; 1, 2,   .   .  .,  ij i p j qβ = =  are the model 
parameters, p  is number of input layer nodes, q  is 
the number of hidden layer nodes, f  and g  denote 
the activation function at hidden and output layer 
respectively and t iy −  is the thi  input (lag) of the model. 
There is no theoretical idea for determining number 
of layers and nodes. These parameters are actually 
identified by performing experiments using given data 
i.e. trial and error method.

Numerous academic studies have concluded that 
a neural network model with a single hidden layer 

is adequate for accurately simulating any complex 
non‑linear function. Because selecting an activation 
function is the primary focus when using a neural 
network model, it is also a difficult process. To predict 
future values using previously recorded values, this 
work employs a single hidden layer and a single 
layer. The logistic sigmoid transfer function is the 
most commonly used activation function for adding 
nonlinearity to a model.

Fig. 2. Time Delay Neural Network (TDNN) with one hidden layer

SUPPORT VECTOR MACHINE (SVM) 
The support vector machine (SVM) originated 

from Vapnik’s statistical learning theory (Vapnik,1995, 
1997), which has the design of a feedforward network 
with an input layer, a single hidden layer of non-linear 
units and an output layer, and formulates the regression 
problem as a quadratic programming (QP) problem. 
SVM estimates a function by nonlinearly mapping 
the input space into a high-dimensional hidden space 
and then running the linear regression in the output 
space. Thus, the linear regression in the output space 
corresponds to a non-linear regression in the low-
dimensional input space. The theory denotes that if 
the dimensions of feature space (or hidden space) are 
high enough, SVM may approximate any non-linear 
mapping relations. As the name implies, the design 
of the SVM hinges upon the extraction of a subset of 
the training data that serves as support vectors, which 
represent a stable characteristic of the data.

The SVM regression function is formulated as 
follows 

( )y w x bφ= + ,� (5)
where ϕ(x) is called the feature which is non-linear 

mapped from the input space x. 
The coefficients w and b are estimated by 

minimising 
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where both C and ɛ are prescribed parameters. The 
first term ( )d, yLε  is called the ɛ-intensive loss function. 
The di is the actual price in the ith period. This function 
indicates that error below ɛ are not penalized. The term 

C ( )
1

1 ,
N

i i
i

L d y
N ε

=
∑  is the empirical error. The second 

term 21  w 
2

 measures the flatness of the function. C 

evaluates the trade-off between the empirical risk and 
the flatness of the model.

Fig. 3. Support Vector Machine diagrammatic representation

Introducing the positive slack variables ζ and ζ* 
which represent the distance from the actual values to 
the corresponding boundary values of ɛ-tube. Eq. (2) 
is transformed to the following constrained formation:

Minimize :
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Subjected to:
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Finally, introducing Lagrangian multipliers and 
maximizing the dual function of Eq.(4) changes Eq. (4) 
to the following form:
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 are called Lagrangian multipliers. They 
satisfy the equalities ,

* 0i iα α× = ,

( ) ( ) ( )* *
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f x K x x bα α α α
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Here, ( ) , iK x x  is called the kernel function. The 
value of the kernel is equal to the inner product of two 
vectors  ix  and jx  in the feature space ϕ( ix ) and ϕ( jx  ), 
such that 

( )K ,   i jx x  = ( ) ( )* i jx xφ φ

Radial basis function is specified in this study. 

Long Short Term Memory (LSTM)
For the prediction of time series values where there 

is a significant gap between the data, traditional RNN 
(Recurrent Neural Network) is not favoured. Therefore, 
we opt to use the LSTM networks, a more advanced and 
fascinating neural network model. The acronym LSTM 
is used to refer to long-short term memory. “Long-way 
dependability” can be handled by these networks. They 
are naturally good for long-term memory retention. 
One cell state and three gates make up the LSTM unit’s 
structure. The LSTM cell can add or delete information 
from the cell using this gating mechanism. Information 
can be passed via the network using gates, which are 
optional. The three gates—input gate, forget gate, and 
output gate—interact to calculate the cell state.

1 ( * )  ( *  )  t o o o
t tO sigma W h W X b− = + +  � (17)

here Eq.(13) represents calculations by output gate.

1  ( * )  ( *  )  t I I I
t tI sigma W h W X b− = + +  � (18)

here Eq.(14) represents calculations by input gate.

1  ( * )  ( *  )  t F F F
t tF sigma W h W X b− = + +  � (19)
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here Eq.(15) represents calculations by forget gate.

( )*t
t h th O sigma C= � (20)

* )C
tX b+

� (21)
here Eq.(16) & Eq.(17) represents calculations of 

current hidden state and current cell state respectively. 
Where

tI  denotes input gate,
tF  denotes forget gate,
tO  denotes output gate,

th  denotes current hidden state,

 tC  denotes current cell state,

1tC −  denotes previous cell state,

1th −  denotes output of previous LSTM cell (time 
stamp t-1),

tX  denotes current input at timestamp ’t’,
xb  denotes bias for the respective gates(x)

Stacked LSTM 
A variation on the classic LSTM model, the stacked 

LSTM stacks multiple LSTM layers vertically on 
top of one another, with each LSTM layer containing 
multiple memory cells. Making the LSTM model 
denser simply means that it will learn the features and 
data descriptions more precisely from the beginning. In 
certain studies, researchers discovered that in order to 
simulate prediction abilities, network depth was more 
significant than the amount of memory cells in a given 
layer. When looking for a model that can adapt the 
hierarchical representation of time-sequence data, the 

stacked LSTM model is empirically found to be more 
beneficial. The phases of our model are as follows.
•	 The dataset is partitioned into the train and test 

dataset. 
•	 Implement 2 layer stacked LSTM model. 
•	 Choose the right number of LSTM hyper-

parameters.
•	 Fit the model using train dataset 
•	 Check the model performance using validation 

data.
•	 Calculate error in prediction results.

Bidirectional LSTM 
The two layers of LSTM structure that make up 

the bidirectional LSTM neural network are utilised to 
calculate the hidden vectors from the front to the back 
and from the back to the front, respectively. These two 
layers decide the output of the bidirectional LSTM 
neural network.

Fig. 5. Basic structure of Bi-directional LSTM

The typical feed-forward mechanism neural 
network is distinct from the bidirectional LSTM neural 
network. In a bidirectional LSTM, the internal nodes in 
each layer are not connected to one another. In order to 
increase the association of single pieces of information 
in various time series, a directional loop is added in 
the connection of hidden layers, foregoing information; 
outcomes are learned and stored in the memory unit. 
Combining the prior output with the current input 
yields the neural network’s current output. However, 
due to a lack of delay window width, there will be 
gradient disappearance and gradient explosion issues 
as the amount of input data in the time series increases.

Fig. 4. LSTM unit cell structure
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The bidirectional LSTM neural network, which is 
based on the conventional LSTM model, will effectively 
take into account the front and back correlation of 
the load data in time series and enhance the model’s 
performance, particularly for the sequence classification 
problem. The forward layer’s input data sequence 
serves as training data during the training phase, and 
the backward layer serves as the reverse copy of the 
input data sequence. In order to prevent the forgetting 
of the order information, the outcomes of bidirectional 
structure prediction are affected by the prior input and 
the subsequent input, increasing the reliance between 
the training data. Figure  5 demonstrates how the 
forward layer computes the forward direction from 1 
to t while saving the forward hidden layer’s output at 
each instant. The reverse time series is computed by 
the backward layer, which also records the output of 
the backward hidden layer at each instant. By merging 
the respective output values of the forward layer and 
backward layer at each time point, the output of the 
bidirectional LSTM neural network is then determined. 
You may write the bidirectional LSTM neural network 
as follows:

( )1t t ts f Ux Ws −= + � (22)

( )1' ' 't t ts f U x W s ++′= � (23)

( )'t t to g Vs V s= + � (24)

where ts  is the state variable of the hidden layer at 
time t, to  is the state variable of the output layer at time 
t, 'ts  is the state variable of the reverse hidden layer 
at time t, tx  is the input vector, g and f are activation 
functions, V, W, and U are the weight matrix from the 
hidden layer to the output layer, the hidden layer, and 
the input layer to the hidden layer, and V՛, W՛, and U՛ 
are the corresponding reverse weight matrix. The state 
weight matrix of the forward layer and the backward 
layer is not shared information between the two. The 
forward layer and backward layer are calculated in turn 
and give the result of each time. The final output to  
depends on the sum of the forward calculation result ts  
and the reverse calculation result 'ts .

Accuracy Measures:
Mean Absolute Percentage Error:

1

1         / 100
h

s s
s

MAPE z f
h =

= ×∑

where sf  is the time series, h is the forecast horizon, 
sz  is the residual of the time series and ˆ

s s sz f f= −  
where ŝf  is the predicted value for time s.

Root Mean Squared Error:

( )2

1

1 
h

s
s

RMSE z
h =

= ∑

where sz  denotes the residual and h is the forecast 
horizon.

4.	 RESULTS AND DISCUSSION
The descriptive statistics of our datasets have been 

highlighted in Table 1. Initially, datasets were non-
stationary and first differencing has been applied to 
make them stationary. The Table 2 given below shows 
that the two tests for stationarity of data give significant 
results for the first differenced level of the two onion 
price series used. Teraesvirta neural network test and 
White’s neural network test have been used to detect 
non-linearity in data. Null hypothesis in both the test 
assumes that the series is linear. As we find out that 
the results are significant, therefore both the time series 
data in our study are non-linear (Table 3). The datasets 
have been decomposed into its components to check 
seasonality. Decompose() function of preinstalled 
“stats” package and stl() function from “forecast” 
package in R software indicated that data sets are non-
seasonal in nature.

Table 1. Descriptive Statistics of weekly price series of Onion 
(2010-2018)

Statistics Azadpur market Kolhapur market

Observations 469 412

Mean (Rs.) 1296.90 1192.50

Median (Rs.) 1063.00 908.30

Maximum (Rs.) 5355.00 4750.00

Minimum (Rs.) 440.20 400.00

Standard Deviation (Rs.) 836.89 799.62

Skewness 2.03 2.05

Kurtosis 4.36 4.60

Note: Onion price (Rs./quintal)

Table 2. Stationarity test for Onion weekly price series

Data Series
ADF PP

t-statistic Prob. t-statistic Prob.

Onion Azadpur -4.44 0.01 -24.46 0.03

Kolhapur -3.99  0.01 -33.46 0.01
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Table 3. Non-linearity test for Onion weekly price series

 Data  Series
Teraesvirta neural 

network test
White’s neural 

network test

Chi square P value Chi square P value

 Onion
 Azadpur

 34.25 <0.01  14.41 <0.01

 Kolhapur
 13.24 <0.01  16.63 <0.01

GARCH
Fitting auto ARIMA Model in R to our data series 

gave ARIMA (3,0,2) as fit to the Azadpur onion weekly 
price series and ARIMA(1,0,1) for Kolhapur onion 
weekly price series. We cross checked the ARIMA 
parameters by checking AIC values for different 
combinations of parameter p and q and found out the 
mentioned ARIMA models to be the best fit (Table 4).
Table 4. Identifying the ARIMA parameters based on AIC values 

for Azadpur and Kolhapur (in brackets) dataset

Parameters q=0 q=1 q=2 q=3

p=0 7460 (6495) 6925 (6164) 6671(5996) 6472 (5925)

p=1 6219 (5750) 6192 (5749) 6191 (5751) 6183 (5750)

p=2 6196 (5749) 6183 (5751) 6184 (5753) 6174 (5749)

p=3 6196 (5751) 6183 (5753) 6171(5752) 6178 (5750)

Fitting these models to our data set and subsequently 
forecasting resulted in high RMSE and MAPE values, 
confirming that the ARIMA cannot model and forecast 
volatile data efficiently.

Thus, the need of modelling these series with 
nonlinear models like GARCH was felt. Thus, the 
ARCH – Lagrange multiplier (LM) test was carried 
out on the residuals obtained after fitting the ARIMA 
model on the two series to test whether residuals do in 
fact remain constant. The results of the test revealed 
the presence of ARCH effect for both the series 
(Table  5). The higher Chi-square value for Azadpur 
series claims that its conditional volatility is more than 
that of Kolhapur. It can also be inferred that the level 
of heteroscedasticity present in the data of Azadpur is 
high.

Table 5. ARCH-LM test

Data Series
 ARCH-LM test

Chi squared P value

 Onion
 Azadpur 138.69 <0.01

Kolhapur 26.40  0.01

Fitting of GARCH Model
The GARCH model was fitted to both the price 

series and then forecasting was done. For the Azadpur 
market price series, the AR(3)-GARCH(1,1) model 
was identified to be the best model on the basis of in-
sample performance and AR(1)-GARCH(1,1) in case of 
Kolhapur price series. The estimates of the parameters 
of the GARCH model along with their standard errors 
in brackets for both series are given in Table 6. The 
results have revealed that onion price series exhibit a 
persisting volatility as the sum of alpha and beta are 
close to one. 

Table 6. Estimates of the parameters of the GARCH model

 Series   alpha   beta   AIC

 Azadpur  0.39 (0.06)  0.61 (0.04)   12.72

 Kolhapur  0.63 (0.07)  0.37 (0.04)   13.08

Performance of the model in forecasting the prices 
for last 12 weeks of the year 2018 for both the datasets 
have been depicted in Figs. 6 and 7.

TDNN
The issue of finding a parsimonious model is 

taken into account while selecting the best model for 
each price series. The parsimonious models not only 
have the recognition ability but also have the more 
important generalization ability. Ten hidden nodes in 
case of Azadpur dataset and six hidden nodes in case of 
Kolhapur have been used. Sigmoid activation function 
has been applied to both the data series. After fitting 
the training data set, out of sample forecasting has 
been done for twelve weeks. According to the observed 
MAPE and RMSE values, this model performs slightly 
better than GARCH. Performance of the model is 
represented by graphs in figures 6 and 7.

SVM
Two free parameters (ɛ and C) and two kernel 

coefficients (d and σ2) have to be selected by users 
before running the SVM procedure. Tenfold cross 
validation technique has been employed in our study. 
The motivation for using cross-validation here is to 
validate the model on a dataset different from the one 
used for parameter estimation. In this way we may use 
the training set to assess the performance of various 
values of parameters, and thereby choose the best one. 

For the SVMs models, three parameters: σ, ɛ, 
and C were adjusted based on the validation sets. The 
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parameter sets with the lowest values of MSE were 
selected for use in the best fitted model. Improper 
selection of parameters can cause either over-fitting or 
under-fitting of the training data. ɛ = 0.1, C=16 have 
been specified in our SVM model and Radial basis 
kernel function is employed. Forecast performance 
of the model has been depicted by graphs in figures 6 
and 7.

LSTM
Different forms of LSTM model are tuned by 

conducting a set of experiments on different structures. 
Different number of memory cells and number of 

epochs are used to train the models to find the best 
trained structure. The same operations are performed on 
the different architectures to measure the performance 
of each designed model. Finally, the parameters of 
the models with more accuracy have been chosen to 
proceed in our study.

 In our study, the final output is produced by a 
linear activation function of one dense layer. The 
various hyper parameters considered for the training of 
LSTM models are the number of input nodes, number 
of hidden nodes, number of hidden layers, batch size 
and the number of epochs. These hyper parameters not 

Fig. 6. Comparison of actual price and forecasted price by GARCH, TDNN and SVM for Azadpur onion price series (last 12 weeks of 2018)

Fig. 7. Comparison of actual and forecasted price by GARCH,TDNN and SVM for Kolhapur onion price series (last 12 weeks of 2018)
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only regulate the design (architecture and topology) of 
the model, but also influence the primary parameters 
of a model such as weights are optimized. Thus, 
determining the optimized set of different hyper 
parameters is of great importance for yielding the best 
model for a given data set. Initial value of training 
learning rate is 0.001. Further, Rectified Linear Unit 
(RELU) activation function has been used for all the 
three forms of LSTM employed in our study. 

The training of a LSTM model consists of several 
forward and backward passes of information for the 
optimization of loss function to get the optimized 
weights. A proper choice of optimization algorithm is 

very important as it affects the overall training results 
in terms of both efficiency and time. Adaptive moment 
estimation (Adam) has been used as optimizer which 
uses different learning rates for different parameters 
which can also adapt automatically to optimize the 
loss function and thus performs better than others.
The algorithms of the Adam optimizer maintain the 
moving average of the first and second moments of the 
gradient to normalize the updates of each parameter 
(or weight) of the neural network. In addition, in case 
if the gradients over many iterations are similar, the 
optimizer gives a push to the parameter updates to get 
momentum in a certain direction. Further, the optimizer 

Fig. 8. Comparison of actual price and forecasted price by LSTM for Azadpur onion price series (last 12 weeks of 2018)

Fig. 9. Comparison of actual price and forecasted price by LSTM for Kolhapur onion price series (last 12 weeks of 2018)
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has also the ability to correct the bias value besides the 
weights. 

Forecast performance of the model is depicted by 
graphs in figures 8 and 9.

Table 7. Specifications used for LSTM model

Specifications Azadpur Kolhapur

Number of epochs 100  150

Batch size  64 32

Loss Function MSE MSE

Stacked LSTM
Two or more layers can be used to build stacked 

architectures to model more sophisticated data 
patterns. The architecture of the unidirectional stacked 
layers does not see information in the future, its hidden 
states can only learn and process data inputs from the 

past. Each memory unit receives the output state of its 
corresponding preceding memory unit and redirects 
its output state to the next memory unit. Forecast 
performance of the model has been represented by 
graphs in Figs. 10 and 11.

Table 8. Specifications used for Stacked LSTM model

Specifications Azadpur Kolhapur

Number of epochs 150  100

Batch size  32 16

Loss Function MSE MSE

Bi-LSTM
Bidirectional architecture makes use of data in 

both directions. It consists of two layers; each layer 
processes the data following different flow direction, 
from past to future and from future to past. Both layers 
combine forward and backward contextual information 

Fig. 10. Comparison of actual price and forecasted price by Stacked LSTM model for Azadpur onion price series (last 12 weeks of 2018)

Fig. 11. Comparison of actual price and forecasted price by Stacked LSTM model for Kolhapur onion price series (last 12 weeks of 2018)
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of data sequence to perform forecasting. Performance 
of the model is depicted by graphs in figures 12 and 13.

Table 9. Specifications used for Bi-LSTM model

Specifications Azadpur Kolhapur

Number of epochs 150  200

Batch size  16 8

Loss Function MSE MSE

Figures 14 to 17 shows the contrast between the 
actual values and fitted values by all the models for 
the training sets used in both the series. It is only after 
model fitting (in-sample forecasting) that we go on for 
out of sample forecasting.

The forecasted values of all the models for the last 
12 weeks of the year 2018 have been summarised in 

Table 10 and 12 for both the datasets and their accuracy 
measures are presented in Tables 11 and 13.
Table 11. Comparison of different models by accuracy measures 

for Azadpur dataset

Models
Training Testing

MAPE RMSE MAPE RMSE

GARCH 7.29 203.65 16.74 223.71

TDNN 6.41 116.79 15.63 239.37

SVM 35.01 301.97 17 253.7

LSTM 1.24 40.74 3.17 40.19

S_LSTM 4.05 69.12 1.39 15.93

Bi-LSTM 3.21 40.22 2.24 23.69

Fig. 12. Comparison of actual price and forecasted price by Bi- LSTM model for Azadpur onion price series (last 12 weeks of 2018)

Fig. 13. Comparison of actual price and forecasted price by Bi-LSTM model for Kolhapur onion price series (last 12 weeks of 2018)
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Fig. 14. Graphical plot of actual price of Azadpur dataset and fitted values by GARCH, TDNN and SVM

Fig. 15. Graphical plot of actual price of Azadpur dataset and fitted values by LSTM, Stacked LSTM and Bi-LSTM

Fig. 16. Graphical plot of actual price of Kolhapur dataset and fitted values by GARCH, TDNN and SVM
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Fig. 17. Graphical plot of actual price of Kolhapur dataset and fitted values by LSTM, Stacked LSTM and Bi-LSTM

Table 10. Predicted values of all the models for Azadpur data set (last 12 weeks, 2018)

Week Actual Stacked LSTM Bi LSTM LSTM GARCH TDNN SVM

1 864.00 888.93 831.53 905.91 913.13 899.40 765.23

2 901.50 921.89 871.53 942.67 911.43 878.75 956.78

3 957.00 971.59 930.72 997.27 915.07 869.22 973.75

4 973.00 986.12 947.78 1013.05 918.41 865.53 932.66

5 1334.33 1336.30 1332.09 1373.27 922.74 849.21 951.84

6 1391.67 1395.34 1392.81 1430.94 927.42 828.83 864.62

7 1113.80 1117.71 1097.79 1152.62 932.41 814.00 834.91

8 1044.33 1051.96 1023.81 1083.61 937.55 808.70 826.56

9 1160.80 1163.08 1147.81 1199.46 942.72 809.88 790.76

10 1067.80 1073.99 1048.81 1106.89 947.83 807.76 822.37

11 818.33 849.48 782.81 861.28 952.81 806.57 808.21

12 881.50 904.25 850.20 923.05 957.60 807.46 987.81

Table 12. Predicted values of all the models for Kolhapur data set (last 12 weeks, 2018)

Week Actual Stacked LSTM Bi LSTM  LSTM TDNN GARCH SVM

1 800.00 838.34 760.07 863.89 837.71 843.08 1085.72

2 858.33 886.93 819.29 923.69 832.37 831.51 1480.95

3 933.33 950.68 895.34 1000.53 839.38 821.40 1287.85

4 1460.00 1430.67 1423.67 1535.19 835.29 812.56 972.70

5 1350.00 1326.78 1314.40 1424.55 831.92 804.83 981.57

6 1000.00 1008.49 962.82 1068.74 831.05 798.08 1098.42

7 1000.00 1008.49 962.82 1068.74 828.55 792.18 927.53

8 1066.67 1067.31 1030.16 1136.85 826.08 787.02 823.06

9 850.00 879.93 810.84 915.15 824.17 782.51 753.43

10 840.00 871.56 800.69 904.90 822.13 778.57 923.64

11 775.00 817.79 734.67 838.25 820.17 775.13 1222.61

12 790.00 830.10 749.91 853.63 818.40 772.12 1476.53



169Rabsanjani Pramanik et al. / Journal of the Indian Society of Agricultural Statistics 77(2) 2023  155–170

Table 13. Comparison of different models by accuracy measures 
for Kolhapur dataset

Training Testing

MAPE RMSE MAPE RMSE

GARCH 11.9 325.71 17.13 270.12

TDNN 11.05 250.91 14.18 256.45

SVM 44.01 368.56 34.4 379.74

LSTM 7.18 89.01 7.12 67.68

S_LSTM 7.14 139.23 2.78 28.08

Bi-LSTM 5.14 95.27 4.1 38.25

5.	 CONCLUSION
Location wise two different datasets on the same 

commodity have been used in our study to get a 
comprehensive idea about performance of different 
time series models, machine learning techniques and 
deep learning models on different series. Surprisingly, 
GARCH, SVM and TDNN couldn’t capture the 
volatility properly and do not work according to our 
expectations in forecasting the prices for the datasets 
under consideration. In contrary to this, LSTM, Stacked 
LSTM and Bi-LSTM being deep learning models show 
excellent performance as they capture the volatility 
in our data series perfectly and provide forecast with 
commendable accuracy. For Stacked LSTM, larger 
RMSE value in case of Kolhapur dataset was found out 
in contradiction with the other better performing deep 
learning models, viz., Bi-LSTM and LSTM but the low 
MAPE value of Stacked LSTM model re-assures us of 
good accuracy. Moreover, the RMSE of fitted values of 
GARCH, SVM and TDNN were found to be far more 
than this method for Kolhapur dataset. The graphical 
plots of actual price values against the model fitted 
values have been shown in Figs.14 to 17 which gives 
an idea about how good fit the deep learning models are 
than the other three models (GARCH,TDNN and SVM) 
used in our study. Through this study, it’s quite clear that 
we cannot use any particular model as a universal one 
for volatility forecasting as forecasting techniques are 
data dependent approaches. For our two datasets, deep 
learning models have outperformed GARCH which is 
a very popular model in dealing with the volatile prices 
of commodities like onion. Similarly, TDNN and SVM 
are also reputable approaches for non-linear time series 
forecasting but haven’t worked upto our expectations 
in dealing with these two datasets. It can also be said 
that the models didn’t perform up to the mark in our 
case, might work good in case of other datasets because 

models are data dependent entities at the end. We can 
also add from our study that deep learning models 
like LSTM and its variants could be used further for 
forecasting volatile price series of different agricultural 
crops like potato and others.
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