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SUMMARY
The frequency distribution analysis of yield and auxiliary characters utilizing different probability distributions viz., Dagum 3P, Fatigue Life 3P, 
Gamma 3P, Generalized Gamma 4P, Inverse Gaussian 3P, Log-Logistic 3P, Lognormal 3P and Log-Pearson 3 have been carried out to sample data 
on different morphological growth characters for selecting the best distribution. The PCA was used to identify the important tree characters which 
were significantly contributing towards the yield. On analysing the values of different test statistics and based on the scores of goodness of fit tests 
for different growth variables under study the distribution Dagum 3P was found to be best fitted to spread and yield while Log-Pearson 3 and Inverse 
Gaussian 3P distributions were most valid fits for number of flowers and number of spurs, respectively. Hence, the results of this study can be used to 
know the trend and distributional pattern of auxiliary characters of apple crop towards enhancement of yield. 
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1. INTRODUCTION
Apple being the commercial and dominating 

amongst all the fruit crops in Himachal Pradesh has 
completely transformed the socio-economic status of 
farmers in the High Hills zone of the State. It accounts 
for nearly 79% of the total fruit production (5,65,307 
MT) and is grown in about 49% of the total area under 
fruit crops (2,30,852 hectares) of the State. Its area and 
production have tremendously increased from 88,669 
ha and 49,129 MT in 1999-00 to 1,12,634 ha and 
4,46,574 MT in 2017-18, respectively. Although there is 
a substantial increase in the production and productivity 
of apple in the state yet there are wide variations in yield 
on year-to-year basis due to variable environmental 
situations and phenotypical developmental stages of 
the plant. Therefore, it is very pertinent to equip the 
famers with most probable yield estimates of their trees 
so as to plan for best marketing strategies. The form 
of distribution depends on crop, average yield level 
and many local or regional climatic conditions (Day, 
1965; Gallagher, 1986). The traditional approach to 
forecasting crop yields is to assume normal weather 

and present crop yields as linear extensions of past 
trends. Predicting the future yield and its distribution 
based on the data of previous years has proved to be 
difficult and the results are unreliable. 

Distribution fitting is the method of selecting 
appropriate distributions among the available 
distributions to be fitted on a given set of data to 
predict the probability or to forecast the frequency 
of occurrence of the magnitude of the phenomenon 
in a certain interval (Jha et al., 2012). In practice, 
probability distributions are applied in many fields 
such as actuarial science and insurance, risk analysis, 
investment, market research, business and economic 
research, customer support, mining, reliability 
engineering, chemical engineering, hydrology, 
image processing, physics, medicine, sociology, 
demography etc. Knowledge of the expected behaviour 
of a phenomenon is very useful in a large number of 
problems in practical situations. Such phenomenon 
facilitates decision-makers in making predictions on 
the basis of theoretical information. Frequency analysis 
usually involves the fitting of a theoretical frequency 
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distribution using a selected fitting method. Various 
probability distributions are currently used to predict 
expected yield and a number of probability models have 
been developed to depict the distribution. The selection 
of choice of an appropriate distribution model mainly 
depends on the available yield and auxiliary data at a 
particular site. To find a suitable distribution that suits 
the data well, it is necessary to evaluate the available 
distribution models. The goodness of fit of a statistical 
model describes how well it fits a set of observations. 
Measures of goodness of fit summarize the difference 
between observed and the expected values under the 
given model. Such measures can be used in statistical 
hypothesis testing, e.g. to test whether two samples are 
drawn from identical distributions or whether outcome 
frequencies follow a specified distribution.

Crop-yield probability distributions have been 
extensively studied, mainly in regards to premium 
rate making for crop insurance programs (Yeh and 
Sun, 1980; Ramirez et al., 2003) and for use in farm 
decision support systems. The results of these studies 
can be exploited by farm decision makers to enhance 
the outcomes of their own yield related decisions. 
Farm decision makers need to recognize that crop-
yield distributions may be non-normal which will 
require non-normal methodology to generate useful 
statistics for decision making. The irregularly changing 
weather causes variability in crop yields. Gorski (2009) 
suggested log normal distribution with an inverted 
abscissa for obtaining a fairly good approximation of 
the probability distribution for actual yields. Various 
probability distributions have also been used to predict 
expected rainfall in different return periods through 
probability and frequency analysis of rainfall data 
(Amin et al., 2016). The Gamma distribution was 
used to model the distribution of the quarterly rainfall 
amount and Kolmogorov – Smirnov, one sample test 
was used to evaluate the model fit (Dikko et al., 2013).

In the present study frequency analyses of 
morphological data on growth characters have been 
performed. The objective of the study is to perform 
probability analysis to gauge the trend and distributional 
pattern of important auxiliary growth characters 
significantly contributing towards the enhancement of 
apple yield. 

2. MATERIALS AND METHODS
Probability distributions are basic concepts in 

statistics which link results of statistical experiments 
and their probabilities of occurrence. The use of 
advanced distributions for data analysis increases 
the validity of models, which in turn, leads to better 
decisions. Out of many available distributions, eight 
theoretical (continuous) distributions have been 
used in the present study which included seven non-
negative distributions viz., Dagum 3P, Fatigue Life 
3P, Gamma 3P, Generalized Gamma 4P, Inverse 
Gaussian 3P, Log-Logistic 3P, Lognormal 3P and an 
advanced continuous distribution viz., Log-Pearson 3. 
These distributions have been tried on data pertaining 
growth characteristics which contributed significantly 
towards the yield of tree. For the purpose, data were 
recorded on different tree growth (morphological) 
characteristics like age (years), girth (m), height (m), 
spread (m), volume (m3), number of main branches, 
number of secondary branches, number of spurs per 
tertiary branch, length of spurs (cm), number of flowers 
per tertiary branch, number of fruits per tertiary branch, 
fruit weight (g) and yield of tree (kg) from a random 
sample of 300 apple trees from a randomly selected 
orchards at Shimla district of Himachal Pradesh. The 
comprehensive analysis of data was done with the 
help of graphs of probability density function (PDF) 
and cumulative distribution function (CDF) of these 
distributions. Table 1 shows the equations of PDFs and 
CDFs of different theoretical distributions. 

The goodness of fit test measures the compatibility 
of a random sample with a theoretical probability 
distribution function. It gives the distance and critical 
values, measured between the data and the distribution 
being tested. The critical value is then compared to some 
threshold value. The goodness of fit reports includes 
the test statistics and the critical values calculated 
for various significance levels ( =  0.2, 0.1, 0.05, 0.02, 
0.01). The P-value can be helpful specifically when the 
null hypothesis is rejected at all selected significance 
levels, where the P-value is criteria of uniformity 
between the results actually obtained in the experiment 
and the random chance explanation for those results. It 
is required to know at which level it could be accepted 
(Jha et al., 2011).

2.1 Hypothesis Testing

0H : the data follow the specified distribution;
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1H : the data do not follow the specified distribution.
The hypothesis regarding the distributional form is 

rejected at the chosen significance level (α) if the test 
statistic is greater than the critical value obtained from 
a table.

2.2 P-Value
The P-value, in contrast to fixed α values, is 

calculated based on the test statistic, and denotes the 
threshold value of the significance level in the sense 
that the null hypothesis ( 0H ) will be accepted for all 
values of α less than the P-value. 

Therefore, in assessing whether a given distribution 
is suited to a data-set, the following tests and their 
underlying measures of fit have been used:
i) Kolmogorov–Smirnov test to decide if a sample 

comes from a hypothesized continuous distribution. 
It is based on the empirical cumulative distribution 
function (ECDF). Assume that we have a random 
sample 1 2 nx ,  x ,  ,  x…  from some distribution with 
CDF ( )F x .  The empirical CDF is denoted by

 
( ) [ ]n

1F x Number of observations x
n

= ≤

 The Kolmogorov–Smirnov statistic (D) is based on 
the largest vertical difference between the theoretical 
and the empirical cumulative distribution function:

 

max 1( ) , ( )
1 i i

i iD F x F x
i n n n

− = − − ≤ ≤  

ii) Anderson-Darling test to compare the fit of 
an observed cumulative distribution function to 
an expected cumulative distribution function to 
an expected cumulative distribution function. 
This test gives more weight to the tails than the 
Kolmogorov-Smirnov test.

 The Anderson-Darling statistic ( 2A ) is defined as

 
[ ]2
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1
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iii) Chi Squared test to determine if a sample comes 
from a population with a specific distribution.
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÷
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−
= ∑

3. RESULTS AND DISCUSSION
In the first stage of analysis, descriptive statistics 

giving primary and important information (Table 2) and 
correlation between the different tree characteristics 
(Table 3) were calculated. Since the standard deviation 
showed substantial differences, data were standardized. 
Further all variables were significantly correlated 
with yield. Hence, a statistical multivariate technique 
called principal component analysis (PCA) that uses 
orthogonal transformation to convert several correlated 
observed variables into a smaller number of linearly 
uncorrelated variables known as principal components 
was employed using SPSS windows version 22 
software. A large number of variables are often 
measured by plant breeders, some of which may not 
be of sufficient discriminatory power for germplasm 
evaluation, characterization and management (Maji 
and Shaibu, 2012). Sharma et al. (2018) and Verma 
et al. (2018) highlighted the usefulness of multivariate 
techniques for determining the relative contribution 
of morphological characters responsible in increasing 
the apple and kinnow yield respectively. Prior to PCA, 
the data was tested for suitability using Kaiser-Meyer-
Olklin (KMO) measure of sampling adequacy (0.715) 
and Bartlett Test of Sphericity (p value  =  0). The 
extracted components were rotated using orthogonal 
varimax method so that a smaller number of highly 
correlated variables might be put under each factor and 
achieve significant components. Out of 12 correlated 
variables included in PCA, 3 principal components 
with eigen values greater than 1 (i.e. 4.591, 3.177 and 
1.065 respectively)were retained for further analysis 
(Table 4) and explained about 38.26%, 26.48% and 
8.88% of variance respectively of the total variation 
and accounted for 73.61% of total variation of original 
variables. As evident from the scree plot (Fig. 1), only 
the first three principal components explained maximum 
variability. From the fourth component onwards, the 
line is almost flat, meaning each successive component 
is accounting for smaller and smaller amounts of the 
total variance. Maximum extraction (Table 4) was 
shown by the variable number of flowers (0.967) 
followed by height (0.929), spread (0.926) and number 
of spurs respectively. A perusal of Table 5 showing 
loadings of correlation matrix and correlation of 
principal components with original variables using 
Varimax with Kaiser Normalization rotation method 
showed maximum weight of spread (0.404), number 
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of flowers (0.517) and number of spurs (0.429), in 
first, second and the third principal components, 
respectively. A better view of the data is obtained by 
“rotating them”. Thus, by discarding the loads lesser 
than 0.4, the rotation component matrix suggested that 
first principal component consisting of spread (0.957), 
height (0.956), volume (0.931), length of spurs (0.623), 
age (0.545), and fruit weight (0.496) may be interpreted 
as plant vigour. The second principal component 
was dominated by number of flowers (0.955), number 
of spurs (0.924), and number of fruits (0.715) and 
hence may be interpreted as blooming and fruiting 
characteristics. The third principal component 
representing vegetative characteristics consisted of 
number of secondary branches (0.828), girth (0.706), 
and number of main branches (0.685). Hence, important 
morphological characters contributing significantly 
towards the yield of tree, depicted by principal 
component analysis were viz., spread, height, volume, 
number of flowers and number of spurs. Thus, these 
variables along with yield variable have been selected 
for fitting of the probability distributions to sample data 
using the distribution fitting software Easy Fit.

The maximum likelihood method has been used 
to estimate the parameters. Parameters of various 
continuous probability distributions viz., Dagum 3P, 
Fatigue Life 3P, Gamma 3P, Generalized Gamma 4P, 
Inverse Gaussian 3P, Log-Logistic 3P, Lognormal 3P 
and Log-Pearson 3 have been tabulated in Table 6. 
These statistical parameters (scale, shape and location) 
can be used to calculate the estimated values of different 
growth characteristics contributing towards the apple 
yield using different probability distributions at certain 
level of probability. To find a suitable distribution that 
will provide accurate estimates of yield and other tree 
characters, it is necessary to evaluate the available 
distributions.

The eight probability distributions were subjected to 
three goodness of fit tests viz., Kolmogorov Smirnov test, 
Anderson Darling test and Chi-Squared test in respect 
of different morphological tree growth characteristics to 
select one or more best fitting probability distributions. 
A standard procedure was followed for application of 
goodness of fit tests (Chowdhury and Stedinger, 1991). 
The distribution with the lowest statistical value is the 
best-fit. The probability distributions were ranked from 
one (best fit) to eight (least- fit) for these goodness of 

fit tests. The statistic value along with the rank of these 
distributions pertaining to different variables have been 
presented in Table 7.

Selection of the best-fit probability distribution is 
based on the total score from all the goodness of fit tests. 
The results of goodness of fit tests for each probability 
distribution used in this study have been shown in 
Tables 8. Based on the results of the goodness of fit tests 
the best-fit probability distributions were identified. On 
the basis of ranks the Inverse Gaussian 3P distribution 
for spread with rank total = 6, and height with rank 
total = 4, Dagum 3P for volume with rank total = 3 and 
yield with rank total = 3 and Log-Pearson distribution 
was a best fit for number of flowers and number of spurs 
with rank total equal to 5 and 6 respectively (Table 8). 
However, after analysing the goodness of fit deeply by 
looking at the critical value and significance, Dagum 
3P was found to be best suited for spread with scale 
parameter 0.313 β =  and shape parameters k 22.135=  
and 1.290α = . Similarly, Dagum 3P distribution has 
been observed to be optimal analysis of yield with scale 
parameter 267.970β =  and shape parameters k 0.126=  
and 5.202α = . The Log-Pearson 3 and Inverse Gaussian 
3P distributions were the best fits for number of flowers 
with parameters 23.338α = , 0.150β = − , 6.573γ =  and 
number of spurs with parameters 11.379λ = , 7.178µ = , 

0.436γ = − , respectively. The goodness of fit test results 
of finally identified best fit distributions and graphs of 
their PDFs and CDFs distributions are given in Table 9 
and Fig. 2, respectively. The Log-Pearson 3 distribution 
for number of flowers and the Inverse Gaussian 3P 
distribution for number of spurs are accepted by all 
three tests and at all level of significances. Whereas, 
Dagum 3P distribution for spread and yield is accepted 
by Kolmogorov-Smirnov and Anderson-Darling 
tests. Mathematical expression for the calculation of 
respective variables can be obtained. Hence, either from 
graphs or from equations, either ix  or ip  could be easily 
predicted with highest degree of accuracy possible 
with probability analysis. The number of vertical bars 
are based on the total number of observations. The 
equation k 1 log2N= + , was used to find the number of 
bins (histogram), where N is the total sample size. The 
height of each histogram bar indicates how many data 
points fall into that class. 
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4. CONCLUSION
The study has established an evidence about 

the distribution of yield in particular, and important 
morphological characters contributing significantly 
towards apple yield in general. Estimation of yield 
and other tree growth characters in Himachal Pradesh 
obtained from principal component analysis were 
carried out by Dagum 3P, Fatigue Life 3P, Gamma 
3P, Generalized Gamma 4P, Inverse Gaussian 3P, 
Log-Logistic 3P, Lognormal 3P and Log-Pearson 
3 probability distributions on the data recorded on 
300 apple trees. On analysing the values of different 
test statistics and based on the scores of goodness 
of fit tests for different growth variables under study 
the distribution Dagum 3P has given a close fit for 
spread and yield while Log-Pearson 3 and Inverse 
Gaussian 3P were the best fits for number of flowers 
and number of spurs, respectively. There is no single 
distribution which is best fit for frequency analysis 
of all tree characters. Thus, it can be concluded that 
fitting of appropriate statistical distribution(s), for 
yield and important auxiliary character(s) may provide 
information regarding the trend and distributional 
pattern of apple in geographical and agro-climatically 
heterogeneous state of Himachal Pradesh. The expected 
values of different estimates calculated using the best 
fit probability distributions might be used by decision-
makers for making good predictions. Crop-yield 
distribution information, in particular, can be utilised 
for better on-farm decision making and can be a future 
avenue for research.
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Table 1. Probability density functions and cumulative distribution functions

Distribution & Parameters Domain Probability Density Function Cumulative Distribution Function

Dagum 3P 
k- continuous shape parameter  

(k 0)>
α - continuous shape parameter 

( 0)α >
β - continuous scale parameter 

( 0)β >
γ - continuous location parameter

xγ ≤ < +∞
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Fatigue Life(Birnbaum-
Saunders) 3P 

α - continuous shape parameter 
( 0)α >

β - continuous scale parameter 
( 0)β >

γ - continuous location parameter
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( )

 

/ /
 . 

x F x

f x

x x

γ β

γ β
α β γ

γ β β γ
γα

α γ

γ β
α β γ

< < +∞

  
=∅ −      

− + −

  
∅ −      

( )
( ) ( )

( )
/ /

 . 
2

1

x x
f x

x

x
x

γ β β γ
α γ

γ β
α β γ

− + −
=

−

  −
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x
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  −
=∅ −    −  

Gamma 3P
α - continuous shape parameter 

( 0)α >
β - continuous scale parameter 

( 0)β >
γ - continuous location parameter

xγ ≤ < +∞
( ) ( )

( ) ( )( )
1

exp /
x

f x x
α

α

γ
γ β

β τ α

−−
= − − ( ) ( ) ( )

( )
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Gen. Gamma 4P
k- continuous shape parameter  

(k 0)>
α - continuous shape parameter 

( 0)α >
β - continuous scale parameter 

( 0)β >
γ - continuous location parameter

xγ ≤ < +∞
( ) ( )

( )
( )( )

1

exp ( / )

k

k

k

k x
f x

x

α

α

γ
β τ α

γ β

−−
=

− −

( ) ( ) ( )

( )
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Inv. Gaussian 3P
λ - continuous parameter  

( 0)λ >
µ - continuous parameter  

( 0)µ >
γ - continuous location parameter
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3

2

2

2

exp
2

f x
x

x
x

λ

π γ

λ γ µ

µ γ

=
−

 − − −
 − 

( )

( )

1

1 exp 2 /

xF x
x

x
x

λ γφ
γ µ

λ γφ λ µ
γ µ

  −
= − +   −   
  −
− +   −   

Log-Logistic 3P
α - continuous shape parameter 

( 0)α >
β - continuous scale parameter 

( 0)β >
γ - continuous location parameter
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α α
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Lognormal 3P
σ - continuous parameter  
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Log- Pearson 3
α - continuous parameter  
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Table 2. Descriptive statistics of different tree characteristics

Tree 
Characters

Age 
(Years)

Girth 
(m)

Height 
(m)

Spread 
(m)

Volume 
(m3)

Number 
of main 

branches

Number 
of 

secondary 
branches

Number 
of spurs 

per 
tertiary 
branch

Length 
of 

spurs 
(cm)

Number 
of 

flowers 
per 

tertiary 
branch

Number 
of fruits 

per 
tertiary 
branch

Fruit 
weight 

(kg)

Yield 
(kg)

Mean 20.350 0.560 10.163 7.932 1291.810 4.01 14.997 6.742 1.443 27.313 12.118 149.170 116.510

SD 9.487 0.264 8.361 7.298 2448.410 1.41 6.128 5.212 0.141 18.018 9.673 28.068 103.410

CV 0.466 0.473 0.822 0.920 1.895 0.351 0.409 0.773 0.098 0.660 0.798 0.188 0.888

SE 0.548 0.015 0.483 0.421 141.360 0.081 0.354 0.301 0.008 1.040 0.559 1.620 5.970

Skewness 0.360 0.585 1.143 1.184 2.137 0.553 0.578 1.515 0.719 1.025 1.354 -0.607 1.059

Minimum 
value

4 0.13 1.9 0.65 0.49 1 4 1 1.18 2.75 1.5 48.33 1.5

Maximum 
value

50 1.22 35 30.95 13257 10 30 30 1.825 92.5 42 290 500

Table 3. Correlation between different tree characters

Tree 
Characters

Age 
(Years)

Girth 
(m)

Height 
(m)

Spread 
(m)

Volume 
(m3)

Number 
of main 

branches

Number 
of 

secondary 
branches

Number 
of spurs 

per 
tertiary 
branch

Length 
of spurs 

(cm)

Number 
of 

flowers 
per 

tertiary 
branch

Number 
of fruits 

per 
tertiary 
branch

Fruit 
weight 

(kg)

Yield 
(kg)

Age (Years) 1.000

Girth (m) 0.727** 1.000

Height (m) 0.487** 0.463** 1.000

Spread (m) 0.459** 0.507** 0.931** 1.000

Volume 
(m3)

0.406** 0.407** 0.888** 0.924** 1.000

Number 
of main 
branches

0.261** 0.333** 0.000 0.078 0.059 1.000

Number of 
secondary 
branches

0.407** 0.752** 0.154** 0.211** 0.142* 0.328** 1.000

Number 
of spurs 

per tertiary 
branch

0.184** 0.092 -0.357** -0.293** -0.249** 0.173** 0.085 1.000

Length of 
spurs (cm)

0.308** 0.507** 0.550** 0.595** 0.587** 0.231** 0.331** -0.246** 1.000

Number 
of flowers 
per tertiary 

branch

0.239** 0.304** -0.247** -0.161** -0.175** 0.234** 0.315** 0.924** -0.063 1.000

Number 
of fruits 

per tertiary 
branch

0.312** 0.578** 0.055 0.151** 0.043 0.256** 0.569** 0.505** 0.238** 0.764** 1.000

Fruit weight 
(kg)

0.244** 0.236** 0.423** 0.418** 0.337** 0.100 0.151** -0.158** 0.339** -0.069 0.129* 1.000

Yield (kg) 0.641** 0.651** 0.604** 0.663** 0.662** 0.285** 0.375** 0.115* 0.597** 0.207** 0.336** 0.291** 1.000

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).
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Table 4. Eigen values, variance and communalities of different tree characteristics considered for PCA

Tree Characters Communalities: 
Extraction

Initial Eigen values Extraction Sums of Squared 
Loadings

Rotation Sums of Squared 
Loadings

Total
( λ )

% of 
Variance

Cumulative 
% 

Total
( λ )

% of 
Variance

Cumulative 
% 

Total
( λ )

% of 
Variance

Cumulative 
% 

Age (Years) 0.554 4.591 38.257 38.257 4.591 38.257 38.257 4.020 33.503 33.503
Girth (m) 0.842 3.177 26.477 64.734 3.177 26.477 64.734 2.555 21.292 54.795

Height (m) 0.929 1.065 8.879 73.613 1.065 8.879 73.613 2.258 18.817 73.613
Spread (m) 0.926 0.823 6.855 80.467

Volume (m3) 0.872 0.775 6.456 86.923
Number of main branches 0.474 0.684 5.701 92.624

Number of secondary 
branches

0.749 0.402 3.346 95.971

Number of spurs per 
tertiary branch

0.914 0.241 2.011 97.981

Length of spurs(cm) 0.584 0.108 0.899 98.880
Number of flowers per 

tertiary branch
0.967 0.075 0.622 99.502

Number of fruits per 
tertiary branch

0.752 0.046 0.382 99.884

Fruit weight (kg) 0.270 0.014 0.116 100.000

Table 5. Loadings of correlation matrix and rotated component matrix

Tree Characters / 
Variables

Eigen vectors Rotated component matrix
(Varimax with Kaiser Normalization)

PC1 PC2 PC3 PC1 PC2 PC3

Age 0.325 0.142 0.075 0.545 0.334 0.382

Girth 0.380 0.207 -0.203 0.511 0.285 0.707

Height 0.386 -0.242 0.237 0.956 -0.123 0.013

Spread 0.404 -0.197 0.227 0.958 -0.058 0.074

Volume 0.373 -0.218 0.279 0.931 -0.066 -0.015

No. of main branches 0.140 0.205 -0.485 -0.034 0.061 0.685

No. of secondary branches 0.259 0.263 -0.455 0.163 0.194 0.828

No. of spurs -0.052 0.471 0.429 -0.244 0.924 -0.020

Length of spurs 0.339 -0.080 -0.179 0.628 -0.134 0.415

No. of flowers 0.041 0.517 0.321 -0.134 0.955 0.195

No. of fruits 0.200 0.421 0.078 0.139 0.715 0.471

Fruit weight 0.230 -0.091 0.027 0.497 -0.059 0.140

Table 6. Parameters of probability distributions at different locations

Distribution Spread Height Volume No. of flowers No. of spurs Yield 

Dagum 3P k=22.135 
α=1.290 
β=0.313

k=176.570 
α=1.661 
β=0.139

k=54.733 
α=0.471 
β=0.007

k=0.557 
α=3.094 
β=31.339

k=0.856 
α=2.305 
β=5.724

k=0.126 
α=5.202 

β=267.970

Fatigue Life 3P α=1.103 
β=4.704 
γ=0.384

α=1.054 
β=5.660 
γ=1.393

α=3.983 
β=166.6 
γ=-0.472

α=0.614 
β=26.032 
γ=-3.638

α=0.805 
β=5.190 
γ=-0.139

α=1.360 
β=60.164 
γ=-3.991

Gamma 3P α=1.103 
β=4.704 
γ=0.384

α=0.961 
β=8.780 
γ=1.900

α=0.272 
β=4395.0 
γ=0.490

α=1.744 
β=14.341 
γ=2.294

α=0.705 
β=7.325 
γ=1.000

α=0.806 
β=138.810 

γ=1.500
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Gen. Gamma 4P k=0.374 
α=6.206
β=0.0405 
γ=0.611

k=0.402 
α=5.352 
β=0.095 
γ=1.809

k=0.665 
α=0.425
β=2611.9 
γ=0.490

k=1.547 
α=0.821
β=31.761 
γ=2.673

k=1.253 
α=0.678
β=7.846 
γ=1.000

k=2.667 
α=0.216

β=307.230 
γ=1.500

Inv. Gaussian 3P λ=5.279 
µ=7.648 
γ=0.284

λ=6.961 
µ=8.913 
γ=1.250

λ=23.015 
µ=1294.000 

γ=-2.228

λ=88.971 
µ=32.227 
γ=-4.914

λ=11.379 
µ=7.178 
γ=-0.436

λ=129.720 
µ=136.400 
γ=-19.892

Log-Logistic 3P α=1.522 
β=4.241 
γ=0.627

α=1.553 
β=4.807 
γ=1.822

α=0.637 
β=86.951 
γ=0.490

α=2.530 
β=23.427 
γ=-0.976

α=1.948 
β=4.663 
γ=0.393

α=1.132 
β=68.063 
γ=1.374

Lognormal 3P σ=1.062 
µ=1.487 
γ=0.533

σ=1.030 
µ=1.652 
γ=1.621

σ=2.619 
µ=4.626 
γ=0.470

σ=0.592 
µ=3.265 
γ=-3.656

σ=0.778 
µ=1.632 
γ=-0.045

σ=1.188 
µ=4.268 
γ=-4.456

Log- Pearson 3 α=84.446 
β=0.100 
γ=-6.771

α=19.078 
β=0.174 
γ=-1.313

α=40.860 
β=0.399 

γ=-11.644

α=23.338 
β=-0.150 
γ=6.573

α=117.480 
β=0.07276 
γ=10.168

α=6.136 
β=0.572 
γ=7.612

Table 7. Results of Goodness of fit tests

Distribution Spread Height Volume No. of flowers No. of spurs Yield 

KS AD CS KS AD CS KS AD CS KS AD CS KS AD CS KS AD CS

Dagum 3P 0.085
(1 )

3.798
(3 )

51.820
(3 )

0.361
(8 )

77.215
(8 )

225.240
(8 )

0.094
(1 )

4.211
(1 )

41.949
(1 )

0.051
(6 )

1.136
(7 )

8.448
(5 )

0.056
(6 )

1.329
(5 )

28.276
(6 )

0.083
(1 )

2.313
(1 )

32.357
(1 )

Fatigue Life 
3P 

0.094
(3 )

3.274
(1 )

56.770
(5 )

0.117
(4 )

6.037
(4 )

95.562
(4 )

0.135
(6 )

6.466
(5 )

60.192
(2 )

0.048
(3 )

0.825
(4 )

8.168
(3 )

0.045
(1 )

0.929
(2 )

13.009
(4 )

0.211
(8 )

12.157
(8 )

101.880
(6 )

Gamma 3P 0.112
(8 )

6.033
(8)

78.301
(8 )

0.141
(7 )

9.241
(7 )

129.840
(7 )

0.173
(8 )

19.039
(8 )

N/A 0.046
(2 )

0.631
(2 )

17.327
(8 )

0.175
(8 )

75.975
(8 )

N/A 0.159
(5 )

10.272
(6 )

N/A

Gen. Gamma 
4P

0.104
(6 )

4.314
(6 )

73.252
(7 )

0.121
(5 )

6.745
(5 )

107.470
(6)

0.133
(5 )

15.282
(6 )

N/A 0.048
(4 )

0.598
(1 )

17.039
(7 )

0.103
(7 )

66.700
(7 )

N/A 0.116
(2 )

6.461
(3 )

N/A

Inv. Gaussian 
3P

0.090
( 2)

3.480
(2 )

50.209
(2 )

0.105
(2 )

5.646
(1 )

75.976
(1 )

0.153
(7 )

15.817
(7 )

81.968
(5 )

0.050
(5 )

0.861
(5 )

8.580
(6 )

0.050
(3 )

0.972
(3 )

8.650
(1 )

0.175
(6 )

9.204
(4 )

82.335
(3 )

Log-Logistic 
3P

0.098
(4 )

4.045
(5 )

56.580
(4 )

0.100
(1 )

5.729
(2 )

81.198
(3 )

0.107
(2 )

6.107
(4 )

78.207
(4 )

0.054
(8 )

1.357
(8 )

8.243
(4 )

0.051
(4 )

1.543
(6 )

13.575
(5 )

0.157
(4 )

10.783
(7 )

96.736
(5 )

Lognormal 
3P

0.099
(5 )

3.813
(4 )

46.409
(1 )

0.110
(3 )

5.986
(3 )

76.308
(2 )

0.122
(4 )

5.986 
(3 )

82.156
(6 )

0.051
(7 )

0.934
(6 )

7.384
(2 )

0.051
(5 )

1.068
(4 )

8.686
(2 )

0.179
(7 )

9.865
(5 )

87.855
(4 )

Log- Pearson 
3

0.111
(7 )

4.718
(7 )

60.590
(6 )

0.131 
(6 )

7.786 
(6 )

96.491 
(5 )

0.120
(3 )

5.574
(2 )

74.114
(3 )

0.043
(1 )

0.669
(3 )

3.889
(1 )

0.047
(2 )

0.876
(1 )

11.217
(3 )

0.148
(3 )

5.942
(2 )

61.359
(2 )

Table 8. Identification of best –fit distribution for frequency analysis of different tree characters

Distribution \ Tree characters Spread Height Volume No. of flowers No. of spurs Yield 

Dagum 3P 7 24 3 18 17 3

Fatigue Life 3P 9 12 13 10 7 22

Gamma 3P 24 21 16 12 16 11

Gen. Gamma 4P 19 16 11 12 14 5

Inv. Gaussian 3P 6 4 19 16 7 13

Log-Logistic 3P 13 6 10 20 15 16

Lognormal 3P 10 8 13 15 11 16

Log- Pearson 3 20 17 8 5 6 7

Best Fit(s) Inv. Gaussian 3P
Dagum 3P

Inv. Gaussian 3P
Log-Logistic 3P

Dagum 3P
Log-Pearson 

3

Log- Pearson 3
Fatigue Life 3P

Log- Pearson 3
Fatigue Life 3P

Inv. Gaussian 3P

Dagum 3P
Gen. Gamma 

4P
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Table 9. Goodness of fit detail of best-fit distributions

Tree 
characters

Best fit 
distribution

Kolmogorov-Smirnov (D) Anderson-Darling ( )2A Chi-Squared ( 2  ,χ  d.f.=8)

α 0.2 0.1 0.05 0.02 0.01 0.2 0.1 0.05 0.02 0.01 0.2 0.1 0.05 0.02 0.01

Critical 
Value

0.061 0.071 0.078 0.087 0.094 1.375 1.929 2.502 3.289 3.907 11.030 13.362 15.507 18.168 20.090

Spread4 Dagum 3P Statistic 0.085 3.798 51.82

P-Value 0.024 - 1.8234E-8

Reject? Yes Yes Yes No No Yes Yes Yes Yes No Yes Yes Yes Yes Yes

Number of 
flowers10

Log-Pearson 
3

Statistic 0.043 0.669 3.890

P-Value 0.616 - 0.867

Reject? No No No No No No No No No No No No No No No

Number of 
spurs8

Inverse 
Gaussian 3P

Statistic 0.049 0.972 8.650

P-Value 0.432 - 0.373

Reject? No No No No No No No No No No No No No No No

Yield13 Dagum 3P Statistic 0.083 2.313 32.357

P-Value 0.029 - 0.00008

Reject? Yes Yes Yes No No Yes Yes No No No Yes Yes Yes Yes Yes

Fig. 1. Scree plot
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Fig. 2. Graphs of probability density function and cumulative distribution function of best fit


