
1.	 INTRODUCTION
Ranked set sampling (RSS) offers a cost-effective 

alternative to simple random sampling (SRS), 
particularly in situations where obtaining precise 
measurements is expensive or time consuming, but 
ranking units is relatively easy and inexpensive. 
McIntyre (1952) initially proposed the concept of RSS 
in agricultural contexts, proving that it outperformed 
SRS in terms of mean estimation efficiency. Subsequent 
research expanded on the findings of McIntyre 
(1952), analysing the statistical features of RSS. Dell 
and Clutter (1972) developed a formal theoretical 
foundation for the use of RSS in mean estimation, 
proving that RSS produces an unbiased estimate of 
the population average. Stokes and Sager (1988) used 
RSS in health research to show that it can efficiently 

determine the average concentration of a biological 
marker in a population by using simplified, non-
invasive procedures for ranking. Al-Saleh and Samawi 
(2000) demonstrated that RSS gives more efficient mean 
estimates than SRS, particularly when the population 
distribution is skewed or auxiliary information is given 
to assist ranking. Stokes (1977) conducted a detailed 
comparison of RSS and SRS for mean estimation, 
demonstrating that RSS significantly reduces the 
variance of the estimator, particularly in populations 
with high variability. Furthermore, Patil et al. (1994) 
investigated the performance of RSS in contrast to 
stratified and cluster sampling, demonstrating that RSS 
outperforms both approaches when ranking is possible. 
Chen et al. (2004) expanded these studies by assessing 
RSS robustness under various ranking errors and 
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departures from ideal circumstances. Zamanzade and 
Al-Omari (2016) presented a novel RSS technique for 
calculating population mean and variance. Mahdizadeh 
and Zamanzade (2022) used a rank-based methodology 
to estimate the prevalence of breast cancer. In recent 
decades, various authors have focused on estimating 
population means using single and multi-auxiliary 
information under RSS. Samawi and Muttlak (1996) 
calculated the population mean ratio using RSS. Al-
Omari et al. (2009) presented a novel ratio estimator 
of population mean under RSS. Al-Omari and Bouza 
(2015) proposed ratio estimators of the population 
mean with missing data in RSS. Bhushan and Kumar 
(2022a) proposed an optimum class of estimator for 
RSS, whereas Bhushan and Kumar (2022b) proposed 
efficient logarithmic estimators using multi-auxiliary 
information. Rehman and Shabbir (2022) proposed an 
efficient class of estimators for limited population means 
in the presence of non-response under RSS. Kocyigit 
(2023) proposed a new sub-type mean estimator for 
RSS with dual auxiliary variables. Bhushan and Kumar 
(2023) investigated the imputation of missing data using 
multi-auxiliary information via RSS. Punia et al. (2024) 
introduced an enhanced Beluga Whale optimization 
algorithm for engineering optimization problems. Raj 
et al. (2024) developed a new hybrid pelican-particle 
swarm optimization algorithm for global optimization 
issue. Bhushan and Kumar (2024a) proposed various 
RSS imputation algorithms for correlated measurement 
errors. Bhushan and Kumar (2024b) examined various 
unique logarithmic imputation approaches for RSS. 
Bhushan and Kumar (2024b) inspired Kumar et  al. 
(2024a) to develop some unique logarithmic imputation 
algorithms under RSS that make use of multi-auxiliary 
information.

Small area estimation (SAE) is a statistical 
technique used in survey sampling to provide reliable 
estimates for subpopulations or areas where typical 
survey methods fail owing to small sample sizes. These 
small areas might be geographic regions, demographic 
groupings, or other domains of interest in which direct 
estimates based simply on survey data are frequently 
incorrect, resulting in significant variability or large 
standard errors. To overcome this issue, SAE applies 
sophisticated approaches such as direct and synthetic 
estimators. Direct estimators use only data collected 
from the small area itself, which can result in unreliable 
estimates when the sample size is small. However, the 
synthetic estimators borrow strength from adjacent 

regions by assuming that distinct small areas have 
comparable features, so, employing data from the 
larger population or auxiliary information to increase 
precision. SAE improves the accuracy of estimates 
by combining these methodologies, making it vital 
for policymaking, resource allocation, and decision-
making in a variety of domains including health, 
economics, and social sciences.

Several authors developed various design based 
direct and synthetic estimation methods for the 
estimation of population mean under SRS using 
single and multiple auxiliary information. Tikkiwal 
and Ghiya (2000) suggested a generalized class of 
synthetic estimators with the application of crop 
acreage estimation of small areas, whereas Pandey and 
Tikkiwal (2010) investigated a generalized class of 
synthetic estimators for small domain under systematic 
sampling. Rai and Pandey (2013) developed the 
synthetic estimators for small domains using auxiliary 
information. Tikkiwal et  al. (2013) examined the 
performance of generalized regression estimator for 
small domains. Ashutosh et  al. (2024) presented a 
simulation analysis of non-respondent information 
for small domain. Kumar et al. (2024b) done a small 
area estimation using some design based direct and 
synthetic logarithmic estimators, whereas Kumar et al. 
(2024c) designed some enhanced direct and synthetic 
estimators for domain mean with simulation and 
applications. Recently, Ahmed et al. (2024) developed 
an indirect estimation of small area parameters under 
RSS.

In the literature, there exist no domain mean 
estimation methods based on bivariate auxiliary 
information under RSS. Therefore, we develop the 
fundamental theory and notations for SAE methods 
under RSS utilizing bivariate auxiliary information. To 
fill the gap of the literature review, we adapt the synthetic 
mean, ratio, and power ratio estimators employing 
bivariate auxiliary information for estimating the 
domain mean under RSS. To provide efficient estimates 
of domain mean, we propose the synthetic Searls 
power ratio estimators employing bivariate auxiliary 
information under RSS. By incorporating auxiliary data, 
the proposed method further improves the efficiency 
of small area estimators, which is especially useful in 
agricultural contexts where reliable crop production 
estimates are crucial for decision-making, resource 
allocation, and policy formulation. Highlighting these 
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scenarios, such as domains with limited resources or 
sparse data, underscores the practical applicability and 
significance of our estimators.

1.1	 Methodology and notations
The RSS is a statistical technique that enhances 

estimation efficiency by utilizing auxiliary information 
to improve the representativeness of a sample. When 
applied to SAE, the procedure involves the following 
steps:

i.	 The population is divided into small areas, 
often defined by geographic or administrative 
boundaries. The goal is to produce reliable 
estimates for each of these areas, despite 
limited data availability.

ii.	 From the target population, multiple sets of 
samples, each of size m , are drawn randomly 
without measurement. These samples form the 
basis for ranking.

iii.	 Within each set, the units are ranked based on a 
judgment variable or auxiliary information that 
correlates with the variable of interest. Ranking 
can be performed visually, through expert 
opinion, or by using cost-free measurements of 
the auxiliary variable.

iv.	 After ranking, a specific unit (e.g., the first 
smallest unit from first set, second smallest 
unit from second set, or thm  smallest unit from 

thm ) is selected from each set for precise 
measurement. This process completes a cycle.

v.	 The cycle is repeated r  times to produce 
  n mr=  ranked set sample.

vi.	 The RSS data are integrated into a small 
area estimator. This estimator combines 
information from multiple areas and leverages 
correlations between areas to produce more 
precise estimates for each small area.

vii.	RSS improves efficiency by reducing 
the variability in estimates due to better 
representativeness of the sample. The resulting 
small area estimators are more reliable, 
especially in cases of limited sample size or 
scarce direct measurements in some areas.

Let the N  identifiable units construct the population 
( )1 2  , , , .NΛ= Λ Λ … Λ  Let iy  and ( ix , iz ) be the observed 

units of the main variable  y  and auxiliary variables 
( ), ,x z  respectively. Let the ranking be done on the 

variable x  to estimate the parameter . Y  Let ( [ ]iy , ( )ix , 

[ ]iz ) denote the thi  ranked set sample provided ( )ix  is 

the thi  order statistics in the  thi  sample for variable x  
and [ ]iy  and [ ]iz  are the  thi  judgment order in the  thi  
sample for variables ( ), . y z  The perfect and imperfect 
ranking of the units are indicated by the parentheses ()  
and [] , respectively, utilized in the subscript of x  and 
( ), . y z  The notations used throughout the paper are 
defined below:

Y : population mean utilizing N  observations on 
y ;

aY : population mean of domain a  utilizing aN
observations on y ;

X : population mean of variable x  utilizing N  
observations;

aX : population mean of variable x  for domain a  
utilizing aN  observations;

Z : population mean of variable z  utilizing N  
observations;

:aZ  population mean of variable z  for domain a  
utilizing aN  observations;

x : sample mean utilizing  n  observations on 
characteristic x ;

ax : sample mean utilizing an  observations on x ;
z : sample mean utilizing  n  observations on 

characteristic z ;

az : sample mean utilizing an  observations on z ;
y : sample mean utilizing  n  observations on y ;

ay : sample mean of domain a  utilizing an  
observations on y ;

2
xS : population mean square of variable x ;
2
axS : population mean square of variable x  for the 

domain a ;
2
zS : population mean square of variable z ;
2
azS : population mean square of variable z  for the 

domain a ;
2
yS : population mean square of variable y ;
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2
ayS : population mean square of variable y  for the 

domain a ;

xC = /xS X : population variation coefficient of 
variable x ;

axC = /
ax aS X : population variation coefficient of 

variable x  for domain a ;

zC = /zS Z : population variation coefficient of 
variable z ;

azC = /
az aS Z : population variation coefficient of 

variable z  for domain a ;

yC = /yS Y : population variation coefficient of 
variable y ;

ayC = /
ay aS Y : population variation coefficient of 

variable y  for domain a ;

yxρ : correlation coefficient of variables y  and x ;

yzρ : correlation coefficient of variables y  and z ;

xzρ : correlation coefficient of variables x  and z ;

a ay xρ : correlation coefficient of variables y  and x  
for the domain a ;

a ay zρ : correlation coefficient of variables  y  and  z  
for the domain a ;

a ax zρ : correlation coefficient of variables x  and  z
for the domain a .

The bias and MSE of the synthetic estimators can 
be determined by assuming the following notations:

[ ] ( )01ny Y ε= + ,

( ) ( )11nx X ε= + ,

[ ] ( )21nz Z ε= + ,
such that 0 1 2 ( )   ( )   ( ) 0E E Eε ε ε= = = ,

( )
[ ]

2 2 2
0 0   ,

iy yE C Wε γ= − =∆

( ) ( )

2 2 2
1 1   

ix xE C Wε γ= − =∆ ,

( ) [ ]

2 2 2
2 2   

iz zE C Wε γ= − =∆ ,

0 1 ( )  E ε ε = γ
[ ] 01iyx y x yxC C Wρ − = ∆ ,

0 2 ( )  E ε ε =  γ
[ ] 02iyz y z yzC C Wρ − = ∆ ,

1 2 ( )  E ε ε =  γ
[ ] 12ixz x z xzC C Wρ − = ∆ ,

where  1 / nγ = , yC = /yS Y , xC = /xS X , zC = /zS Z ,

[ ] [ ]( ) ( ) ( )( )2 2
2 2 2 2 2 2

1 1

 / ,   /
i ii

m m

y x xy i
i i

W Y m rY W X m rXµ µ
= =

= − = −∑ ∑ ,

[ ] [ ]( )2
2 2 2

1

 /
i i

m

z z
i

W Z m rZµ
=

= −∑ ,

[ ] [ ]( ) ( )( ) 2

1

/
ii i

m

yx y x
i

W Y X m rYXµ µ
=

= − −∑ ,

[ ] [ ]( ) [ ]( ) 2

1

/
i i i

m

yz y z
i

W Y Z m rYZµ µ
=

= − −∑ , 

[ ] ( )( ) [ ]( ) [ ] [ ]( )

( ) ( )( ) [ ] [ ]( )

2

1

/ ,  ,  

,  and .

ii i i

i i

m

xz x z y i
i

x zi i

W X Z m rX Z E Y

E X E Z

µ µ µ

µ µ
=

= − − =

= =

∑

In the next part, certain traditional synthetic 
estimators are adapted and their MSE expressions are 
calculated. In Section 3, we offer the synthetic Searls 
power ratio estimators for domain mean under RSS and 
find out corresponding MSE formulations. In Section 
4, we compare the suggested Searls type synthetic 
estimators to the adapted synthetic mean, ratio, and 
power ratio estimators. In Section 5, a simulation study 
is undertaken on an artificially generated symmetric 
population, while in Section 6, the adapted and 
suggested synthetic estimators are applied to real data. 
The study is concluded in Section 7.

2.	 ADAPTED ESTIMATORS
The choice of synthetic estimators over other 

indirect estimators, such as composite estimators, was 
primarily driven by their simplicity and computational 
efficiency in the context of the study. Synthetic 
estimators based on pooling information across areas 
using a model, which is particularly advantageous 
when dealing with small areas with limited or no 
direct observations. While composite estimators 
combine direct and indirect estimates to balance bias 
and variability, they often require additional modelling 
complexity and reliable direct estimates, which may not 
always be available in certain applications, such as those 
with sparse or imbalanced data. Literature contains no 
estimator for estimating the domain mean under RSS 
by utilizing bi-variate auxiliary information. To fill this 
gap, we have adapted synthetic mean estimator (SME), 
synthetic ratio estimator (SRE), and synthetic power 
ratio estimator (SPRE).
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2.1	 Synthetic mean estimators
A synthetic mean estimator is a technique used in 

SAE to produce estimates for areas with limited or no 
direct data (see, Rao and Molina (2015)). When no 
auxiliary information is available, then we have an 
obvious choice of the SME for estimating the domain 

 a  which is given as

[ ].m nt y=

The bias and MSE of the SME mt  are provided by

( )  m aBias t Y Y= −

and ( ) ( )2 2
0m aMSE t Y Y Y= − + ∆ .

2.2	 Synthetic ratio estimator
A synthetic ratio estimator is an estimation method 

used in SAE to improve the precision of estimates by 
using auxiliary information. It combines data from 
multiple small areas under the assumption that they 
share a common relationship between the main and the 
auxiliary variables. Specifically, the estimator computes 
the ratio of the total of the main variable to the total of 
the auxiliary variable in a larger domain or combined 
area and then applies this ratio to the auxiliary total of 
the target small area. Following Cochran (1977) and 
utilizing bivariate auxiliary information, the SRE for 
estimating the mean of domain a  under RSS is given 
as

[ ]
( ) [ ]

a a
r n

n n

X Zt y
x z

  
  =

    
.

The bias and MSE of the SRE rt  are given by

( ) ( )1 2 01 02 12   2  2 2r aBias t Y= ∆ + ∆ − ∆ − ∆ + ∆

and ( ) ( )2
0 1 2 01 02 12  2  2 2 .r aMSE t Y= ∆ + ∆ + ∆ − ∆ − ∆ + ∆

2.3	 Synthetic power ratio estimator
In order to improve the ratio estimator, Khare and 

Ashutosh (2018) extended the work of Tikkiwal and 
Ghiya (2000) and introduced power ratio estimator for 
domain mean estimation under SRS using bivariate 
auxiliary information. Following Tikkiwal and Ghiya 
(2000) and Khare and Ashutosh (2018), and utilizing 
bivariate auxiliary information, the SPRE for estimating 
the mean of domain a  under RSS is given as

[ ]
( ) [ ]

 a a
p n

n n

X Zt y
x z

θβ
  
  =

      
.

where β  and θ are constants. The bias and 
minimum MSE of the SPRE pt  are given by

( ) ( ) ( )
1 2 01

02 12

1 1
 

2 2p aBias t Y
β β θ θ

β

θ βθ

 + +
= ∆ + ∆ − ∆ −




∆ + ∆ 


and ( )
2 2

2 01 2 02 1 01 02 12
0 2

1 2 12

2.   .p amin MSE t Y
 ∆ ∆ + ∆ ∆ − ∆ ∆ ∆

= ∆ − ∆ ∆ −∆ 

3.	 PROPOSED ESTIMATORS
According to Searls (1964), the efficiency of the 

estimators can be enhanced by multiplying them with a 
tuning scalar. The estimator proposed by Searls (1964) 
indeed relies on a prior knowledge of the population 
coefficient of variation. RSS fits into this context by 
using the auxiliary variable for ranking purposes, 
thereby improving the representativeness of the sample 
without additional measurement costs. The auxiliary 
variable facilitates the ranking of units within sets 
and serves as a source of auxiliary information in the 
estimation process. Following Searls’ suggestion, we 
multiplied a tuning scalar in the SPRE and proposed 
the equivalent synthetic Searls power ratio estimator 
(SSPRE) for the mean of domain ‘a’ based on bivariate 
auxiliary information under RSS as

t y X
x

Z
zk n

a

n

a

n

�
�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�� �

� � � �
�

� �

.

where α , β, and θ are constants.

3.1	 Particular cases
When 1α =  and � �� � 0 , then the SSPRE kt

converts into the synthetic meanestimator mt .
When α  = β = θ = 1, then the SSPRE kt  converts 

into the synthetic ratio estimator rt .
When 1α = , then the SSPRE kt  converts into the 

synthetic power ratio estimator pt .
Theorem 3.1. The bias and minimum MSE of the 

SSPRE kt  are given up to first order approximation as

( ) ( ) ( ) ( )
1 2

01 02 12

1 1
2 2k a a aBias t Y Y Y

β β θ θ
α α

β θ βθ

 + +
= − + ∆ + ∆ −




∆ − ∆ + ∆ 

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( )
2

2and . 1 .k a
Qmin MSE t Y
P

 
= − 

 

Proof. Consider the SSPRE kt  as

[ ]
( ) [ ]

a a
k n

n n

X Zt y
x z

θβ

α
  
  =

   
   

.

We represent the SSPRE kt  using the earlier 
specified notations as

( ) ( ) ( )0
1 2

1 ,
1 1

a a
k

X Zt Y
X Z

β θ

α ε
ε ε

   
= +       + +   

( )( ) ( )0 1 2 ,1 1  1a aX ZY
X Z

β θ
β θα ε ε ε− −   

= + + +   
   

( ) ( )

( )

2
0 1 1

2
2 2

1
1 1

2

1
1 ,

2

a aX ZY
X Z

β θ β β
α ε βε ε

θ θ
θε ε

 +    
= + − +    

     
 + 
− + 

 

( )

( )

2
0 1 2 1

2
2 0 1 0 2 1 2

1
1

2

1
.

2

a aX ZY
X Z

β θ β β
α ε βε θε ε

θ θ
ε βε ε θε ε βθε ε

 +   
= + − − + +   

    
+ 

− − + 


Subtracting aY  on both sides of the above equation 
yields:

( )

( )

2
0 1 2 1

2
2 0 1 0 2 1 2

1
2

1
2

.

a a
k a

a a
a

X Zt Y Y
X Z

X ZY Y
X Z

β θ

β θ

β β
α ε βε θε ε

θ θ
ε βε ε θε ε βθε ε

α

 +    
− = − − + +    

    
+ 

− − + +


     −    
     � (3.1)

Assuming synthetic power ratio estimation

( ) ( )/ /a a aY X X Z Z Y
β θ

≈ , the equation (3.1) may be 
expressed as

( ) ( )

( )

2
0 1 2 1

2
2 0 1 0 2 1 2

1
2

1
.

2

k a a a at Y Y Y Y
β β

α α ε βε θε ε

θ θ
ε βε ε θε ε βθε ε

 +
− = − + − − + +


+ 

− − + 
� (3.2)

We obtain the bias of the proposed SSPRE kt  by 
considering expectation on both sides of equation (3.2) 
as

( ) ( ) ( ) ( )
1 2

01 02 12

1 1
2 2

.

k a a aBias t Y Y Y
β β θ θ

α α

β θ βθ

 + + 
= − + ∆ + ∆ − 

 


∆ − ∆ + ∆ 


To derive the MSE of the SSPRE kt  to the first 
order approximation, we square and take expectation to 
either side of (3.2) as

( ) ( ) ( )

( )

( )

2 2 2 2
0 1 2

01 02 12 1

2 01 02 12

1 1 2 2

1
4 4 4 2 1

2

1
,

2

k aMSE t Y α β β θ θ

β β
β θ βθ α

θ θ
β θ βθ

 
= + + ∆ + + ∆ + + ∆ −


 +

∆ − ∆ + ∆ − + ∆ + 
 

+ 
∆ − ∆ − ∆ + ∆ 



( )2 21 2aY P Qα α= + − .� (3.3)
where 

( ) ( )2 2
0 1 2 01

02 12

1 2 2 4

4 4

P β β θ θ β

θ βθ

= + ∆ + + ∆ + + ∆ − ∆ −

∆ + ∆

and

( ) ( )
1 2 01 02 12

1 1
1

2 2
Q

β β θ θ
β θ βθ

+ +
= + ∆ + ∆ − ∆ − ∆ + ∆ .

Minimizing (3.3) regarding α , we get the optimum 
value of α  as

( )opt
Q
P

α = .

Using the aforementioned optimum value of α  in 
(3.3), we obtain the minimum MSE of the SSPRE kt  as

( )
2

2. 1 .k a
Qmin MSE t Y
P

 
= − 

 

4.	 EFFICIENCY CONDITIONS
This section compares the minimum MSEs of the 

adapted and proposed synthetic estimators, and the 
efficiency conditions are given.

Lemma 4.1. The suggested SSPRE kt  dominates 
the SME mt , if

( ) ( )k mMSE t MSE t<
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( )
2

22 2
01a a

QY Y Y Y
P

 
⇒ − < − + ∆ 

 

( )2
2 2

02 21 a

a a

Y YQ Y
P Y Y

−
⇒ > − − ∆

.
Lemma 4.2. The suggested SSPRE kt  dominates 

the SME rt , if

( ) ( )k rMSE t MSE t<

( )
2

2 2
0 1 2 01 02 121 2 2 2a a

QY Y
P

 
⇒ − < ∆ + ∆ + ∆ − ∆ − ∆ + ∆ 

 

2

0 1 2 01 02 121 2 2 2 .Q
P

⇒ > −∆ − ∆ − ∆ + ∆ + ∆ − ∆

Lemma 4.3. The suggested SSPRE kt  dominates 
the SME pt , if

( ) ( )k pMSE t MSE t<

2 22
2 2 01 2 02 1 01 02 12

0 2
1 2 12

21a a
QY Y
P

   ∆ ∆ + ∆ ∆ − ∆ ∆ ∆
⇒ − < ∆ −   ∆ ∆ − ∆   

2 22
01 2 02 1 01 02 12

0 2
1 2 12

21Q
P

∆ ∆ + ∆ ∆ − ∆ ∆ ∆
⇒ > − ∆ +

∆ ∆ − ∆
.

These inequalities show that when the quality 
measure 2 /  Q P  surpasses a certain threshold, SSPRE 

kt  outperforms SME mt , SRE rt , and SPRE  pt  in 
terms of MSE reduction. As a result, this confirms the 
claim that SSPRE kt  is a more effective estimator under 
the provided parameters, increasing total estimation 
reliability. In the coming section, the inequalities 
derived under the above lemmas will be verified 
through a comprehensive simulation study.

5.	 SIMULATION STUDY
In this section, a simulation study is conducted to 

compare the accuracy of the proposed synthetic 
estimator with the adapted synthetic estimators. The 
simulation generates a symmetric population of size 
N  = 14,000, with means Y = 16, X  = 21, Z  = 27, and 
standard deviations yS = 12, xS  = 15, zS  = 18, while 
exploring various combinations of correlation 
coefficients yxρ , yzρ , and xzρ  to assess the performance 
under different correlation structures.

The aforementioned population consists of seven 
equal domains, each containing 2000 units. From each 
domain, a ranked set sample of size 15n =  is selected 
using the RSS scheme with a set size 3 and 5 cycles. To 
evaluate the performance of the adapted and suggested 
synthetic estimators, the MSE and percent relative 
efficiency (PRE) are computed through 5,000 
simulation iterations. The detailed steps of the 
simulation process are outlined in the following points, 
providing clarity on the methodology employed for this 
analysis.

•	 Select a ranked set sample of size 15n =  from 
each domain with the set size 3 and the number 
of cycles 5.

•	 Using the above ranked set sample, figure out 
the needed descriptive statistics.

•	 The MSE and PRE of the adapted and suggested 
synthetic estimators have been calculated over 
5,000 iterations using the following equations.

( ) ( )
5,000 2

* *
1

1 ,
5,000 a

i

MSE t t Y
=

= −∑

( ) ( )
( )*

*

100.mMSE t
PRE t

MSE t
= ×

where * , , ,and .m r p kt t t t t=

•	 Tables 1-3 contain the findings of the adapted 
and proposed synthetic estimators for different 
correlation combinations.

5.1	 Discussion of simulation findings
Discussing simulation findings entails analysing 

the output data to identify patterns, confirm models, 
and draw conclusions about the phenomena being 
simulated. Therefore, it is essential to interpret the 
simulation results of the synthetic estimators compiled 
in Tables 1-3 for hypothetically generated normal 
population.

The findings of Table 1 indicate that the SSPRE kt  
outperforms SME mt , SRE rt , and SPRE  pt  in terms 
of lesser MSE and greater PRE for fixed values of 

0.75yzρ = , 0.55xzρ = , and passably chosen values of 
0.2,0.4,0.6,0.8yxρ =  throughout each domain. This 

shows that the SSPRE kt  is more efficient and 
trustworthy at capturing the relationship between 
variables, particularly when there are fixed correlations 
between variables ( y , z ), ( x , z ), and moderate to 
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Table 1. MSE and PRE of synthetic estimators for fixed values of  0.75yzρ = , 0.55xzρ = , and varying values of yxρ = (0.2, 0.4, 0.6, 0.8)

Domains Estimators
yxρ

0.2 0.4 0.6 0.8

MSE PRE MSE PRE MSE PRE MSE PRE

1
mt 16.69 100.00 17.35 100.00 16.78 100.00 16.92 100.00

rt 15.40 108.37 12.67 136.92 8.37 200.40 4.86 348.03

pt 2.82  590.93 4.17 415.88 3.00 559.38 0.52 3272.28

kt 2.79 597.23 4.09 423.71 2.95 568.54 0.51 3309.88

2
mt 16.45 100.00 17.04 100.00 16.44 100.00 16.59 100.00

rt 15.37 107.01 11.63 146.47 8.62 190.64 5.13 323.58

pt 2.84  579.99 3.83 444.40 3.09 531.95 0.55 3032.39

kt 2.81 585.28 3.76 452.76 3.04 540.67 0.54 3067.99

3
mt 16.89 100.00 16.82 100.00 16.90 100.00 16.89 100.00

rt 15.31 110.35 11.81 142.49 8.64 195.52 5.13 329.14

pt 2.81 601.03 3.89 432.80 3.09 547.21 0.54 3122.15

kt 2.78 607.81 3.82 440.96 3.04 556.19 0.53 3161.31

4
mt 16.63 100.00 16.91 100.00 16.33 100.00 16.32 100.00

rt 15.51 107.25 11.45 147.71 8.53 191.44 5.07 322.12

pt 2.84  585.91 3.78 447.68 3.06 534.53 0.53 3068.87

kt 2.80 593.46 3.71 456.09 3.01 543.29 0.52 3109.73

5
mt 16.90 100.00 17.19 100.00 16.91 100.00 17.00 100.00

rt 15.83 106.78 11.88 144.67 8.66 195.36 5.08 334.55

pt 2.90 582.24 3.92 438.89 3.10 545.48 0.54 3137.87

kt 2.87 587.94 3.84 447.15 3.05 554.41 0.54 3173.36

6
mt 16.77 100.00 17.21 100.00 16.82 100.00 16.91 100.00

rt 14.87 112.80 12.10 142.26 8.26 203.75 4.89 345.72

pt 2.73 614.73 3.99 431.04 2.96 568.69 0.52 3265.83

kt 2.70 622.05 3.92 439.14 2.91 578.01 0.51 3304.71

7
mt 16.55 100.00 17.27 100.00 16.55 100.00 16.62 100.00

rt 15.68 105.56 11.72 147.27 8.73 189.48 5.16 322.03

pt 2.88 573.68 3.87 446.69 3.14 527.44 0.55 3015.22

kt 2.85 579.74 3.79 455.08 3.09 536.09 0.55 3049.68
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Table 2. MSE and PRE of synthetic estimators for fixed values of  0.65yxρ = , 0.50xzρ = , and varying values of yzρ = (0.2, 0.4, 0.6, 0.8)

Domains Estimators
yzρ

0.2 0.4 0.6 0.8

MSE PRE MSE PRE MSE PRE MSE PRE

1
mt 16.71 100.00 16.73 100.00 16.76 100.00 16.84 100.00

rt 15.30 109.18 12.20 137.10 9.09 184.47 5.92 284.35

pt 2.52 664.34 3.37 496.38 3.17 528.66 1.90 887.38

kt 2.49 671.43 3.32  504.24 3.12 537.76 1.88  896.90

2
mt 17.10 100.00 16.88 100.00 16.62 100.00 16.46 100.00

rt 16.29  105.00 12.89 130.92 9.49 175.12 6.15 267.45

pt 2.68 638.89 3.55  474.77 3.31 502.55 1.97 834.38

kt 2.65 645.51 3.50 482.28 3.25  511.22 1.95 843.36

3
mt 17.00 100.00 16.98 100.00 16.94 100.00 16.89 100.00

rt 16.40 103.71 12.97 130.93 9.54 177.65 6.16 274.13

pt 2.68 634.68 3.56 476.40 3.31 511.49 1.97 858.18

kt 2.65 641.84 3.51 483.99 3.26 520.32 1.95 867.43

4
mt 16.51 100.00 16.37 100.00 16.29 100.00 16.34 100.00

rt 15.77 104.68 12.52 130.70 9.29 175.35 6.10 267.76

pt 2.57 643.40 3.43 476.69 3.23 504.49 1.96 835.51

kt 2.54 650.59 3.38 484.29 3.17 513.19 1.93 844.49

5
mt 17.14 100.00 17.06 100.00 16.97 100.00 16.94 100.00

rt 15.67 109.38 12.54 136.07 9.37 181.00 6.16 274.82

pt 2.58 664.55 3.46  492.73 3.27 519.29 1.97 857.78

kt 2.55 671.57 3.41 500.53 3.21 528.23 1.95 867.00

6
mt 17.12 100.00 17.03 100.00 16.91 100.00 16.83 100.00

rt 15.73 108.84 12.38 137.54 9.08 186.22 5.88 286.33

pt 2.58 663.08 3.41 499.40 3.16 535.03 1.88 893.50

kt 2.55 670.10 3.36 507.30 3.11 544.24 1.86 903.12

7
mt 16.69 100.00 16.64 100.00 16.58 100.00 16.57 100.00

rt 16.22 102.89 12.91 128.89 9.56 173.42 6.22 266.39

pt 2.66 626.87 3.56 467.46 3.34 497.03 2.00 828.55

kt 2.63 633.34 3.50 474.84 3.28 505.60 1.98 837.47
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Table 3. MSE and PRE of synthetic estimators for fixed values of  0.62yxρ = , 0.48yzρ = , and varying values of xzρ = (0.2, 0.4, 0.6, 0.8)

Domains Estimators
xzρ

0.2 0.4 0.6 0.8

MSE PRE MSE PRE MSE PRE MSE PRE

1
mt 16.78 100.00 16.72 100.00 16.73 100.00 16.83 100.00

rt 6.84 245.34 9.95 168.11 13.03 128.42 14.50 116.03

pt 3.08 544.17 3.73 448.43 3.78 442.97 2.82 597.58

kt 3.02 555.47 3.65 457.64 3.70 451.68 2.31 727.62

2
mt 16.70 100.00 16.71 100.00 16.84 100.00 17.03 100.00

rt 7.18 232.51 10.42 160.40 13.74 122.57 15.48 110.00

pt 3.23 516.57 3.90 428.62 3.98 423.12 2.81 605.98

kt 3.17 527.30 3.82 437.42 3.91 431.34 2.75 619.40

3
mt 16.95 100.00 16.96 100.00 16.98 100.00 16.97 100.00

rt 7.22 234.80 10.48 161.87 13.83 122.79 15.54 109.18

pt 3.24 523.25 3.91 433.78 4.00 424.66 2.96 572.60

kt 3.17 534.13 3.83 442.68 3.92 433.18 2.61 650.87

4
mt 16.30 100.00 16.31 100.00 16.35 100.00 16.42 100.00

rt 7.02 232.17 10.15 160.66 13.36 122.43 15.06 109.04

pt 3.15 516.99 3.79 430.50 3.86 424.21 2.93 559.65

kt 3.09 527.72 3.71 439.33 3.78 432.79 2.48 661.51

5
mt 17.01 100.00 17.00 100.00 17.05 100.00 17.13 100.00

rt 7.06 240.82 10.23 166.15 13.39 127.34 14.96 114.51

pt 3.18 534.80 3.83 443.71 3.88 439.02 2.60 659.15

kt 3.12 545.91 3.75 452.82 3.81 447.54 2.40 714.98

6
mt 16.96 100.00 16.95 100.00 17.01 100.00 17.11 100.00

rt 6.88 246.42 9.99 169.75 13.19 129.00 14.87 115.05

pt 3.09 548.34 3.73 454.11 3.81 446.13 2.83 604.05

kt 3.03 559.74 3.66 463.43 3.74 454.86 2.52 677.46

7
mt 16.60 100.00 16.60 100.00 16.63 100.00 16.68 100.00

rt 7.23 229.70 10.48 158.46 13.77 120.79 15.44 108.06

pt 3.25 510.13 3.92 423.19 3.98 417.72 2.85 585.75

kt 3.19 520.74 3.84 431.88 3.91 425.79 2.34 713.31
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high correlations between variables ( y , x ). The 
constantly reduced MSE across different yxρ  values 
emphasise the stability of SSPRE in minimizing 
prediction errors, while its superior PRE reveals a 
stronger explanatory power than the other estimators. 
Thus, the SSPRE is the best option, especially in 
circumstances where the correlations between the 
auxiliary variables and the study variable are moderate 
to high, delivering consistent and reliable estimates 
across various correlation structures.

The findings in Table 2 and Table 3 for various 
correlation coefficient combinations provide a similar 
interpretation. In both Tables, the SSPRE kt  continues 
to outperform in terms of minimizing MSE and 
maximizing PRE, independent of the various correlation 
structures. These constant trends across several 
scenarios demonstrate the stability and flexibility of 
SSPRE kt  when used to various correlation settings. 
The results also show that the estimator can retain its 
efficiency and forecast accuracy even when the inter-
relationships between the variables change, extending 
its value to a wider variety of applications. This suggests 
that SSPRE kt  may be securely implemented in a 
variety of data contexts where correlations between 
auxiliary variables and study variable display varying 
strengths and patterns, giving it an adaptable option for 
reliable estimations.

6.	 REAL DATA APPLICATION
Uttar Pradesh (UP), like the majority of Indian 

states, is administratively split into districts, largely for 
tax collection and efficient handling of governmental 
functions. Each district is further divided into tehsils, 
which function as intermediate administrative divisions. 
These tehsils are subsequently split into blocks, which 
are the smallest administrative divisions with separate 
administration and development responsibilities. In the 
current study, blocks are viewed as small domains that 
reflect localised locations where government plans, 
resources and policies are implemented and monitored.

In this section, we estimate the paddy crop 
production for the 2022-2023 agricultural season over 
nine unique blocks of Kanpur district in Uttar Pradesh, 
treating each block as a discrete domain. The primary 
variable y  depends on total production (in tonnes) of 
paddy during 2022-2023, while the auxiliary variables 
x  and z  correspond to the total production of paddy 

during 2021-2022 and 2020-2021, respectively. The 
data on the production of paddy for these agricultural 
seasons are obtained from the agricultural department, 
Directorate of Agricultural Statistics and Crop 
Insurance, Government of Uttar Pradesh, India. The 
production of paddy is estimated from crop-cutting 
experiments (CCEs) under general crop estimation 
survey (GCES). Such surveys are conducted twice a 
year to cover different types of crops. The CCE is a 
method used by governments and agricultural bodies to 
estimate the yield of a crop or region. The CCEs are an 
integral part of the implementation of Pradhan Mantri 
Fasal Bima Yojana. It helps in analysing the overall 
yield of any village and helps us in estimating the yield 
of any region.

Table 4. Total production of paddy crop in blocks of Kanpur 
district of Uttar Pradesh for agricultural seasons 2020-21, 2021-

22, and 2022-23

S.
No.

Blocks of
Kanpur
District  

( a )

Number 
of 

villages 
in Blocks 

( aN )

Total 
production 
(in tonne) 
of paddy 

in 2022-23 
( aY )

Total 
production 
(in tonne)
of paddy 

in 2021-22 
( aX )

Total 
production 
(in tonne) 
of paddy 
2020-21  

( aZ )

1 Bidhnu 44 13041 13654 15118

2 Bilhaur 24 7044 6966 8612

3 Chaubepur 25 8220 7919 9075

4 Ghatampur 14 3124 2952 3141

5 Kakwan 22 10637 10595 11601

6 Kalyanpur 16 5632 5454 5594

7 Patara 27 6144 6132 6345

8 Sarsaul 27 4298 4053 4377

9 Shivrajpur 49 17137 17397 18719

Table 4 displays the total production of paddy in 
different years on the blocks, while, Table 5 summarises 
statistical parameters for each block. A ranked set 
sample of size 15n =  is selected from each domain 
with set size 3 and number of cycles 5. The domain 
parameters reported in Table 5 are taken to compute the 
MSE and PRE of the proposed synthetic estimators. 
The PRE of the synthetic estimators is computed by 
employing the following formula:

( )
( )*

100mMSE t
PRE

MSE t
= ×

Table 6 presents the MSE and PRE of synthetic 
estimators based on real data. These findings clearly 
illustrate the superiority of the SSPRE estimator kt , 
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Table 5. Features of the population for different domains

Domains aN aY aX aZ ayS
axS

azS
a ay xρ

a ay zρ
a ax zρ

1 44 296.39 310.32 343.59 295.22 337.12 393.92 0.98 0.96 0.98

2 24 293.50 290.25 358.83 298.33 309.29 411.78 0.96 0.96 0.98

3 25 328.80 316.76 363.00 242.59 249.85 263.98 0.97 0.97 0.95

4 14 223.14 210.86 224.36 195.34 190.57 196.56 0.98 0.98 0.99

5 22 483.50 481.59 527.32 346.62 351.30 391.26 0.97 0.97 0.94

6 16 352.00 340.88 349.62 220.49 198.19 206.20 0.98 0.97 0.98

7 27 227.56 227.11 235.00 165.46 166.31 164.53 0.98 0.98 0.99

8 27 162.89 150.11 162.11 109.40 104.14 115.45 0.98 0.98 0.98

9 49 349.73 355.04 382.02 261.11 257.47 264.96 0.97 0.98 0.99

Table 6. Synthetic estimators’ MSE and PRE for a simulated normal population

Domains Estimators MSE PRE

1
mt 4449.19 100.00

rt 3645.20 122.06

pt 119.09 3736.05

kt 116.10 3832.33

2
mt 4501.13 100.00

rt 3574.55 125.92

pt 116.78 3854.36

kt 113.85 3953.70

3
mt 5010.19 100.00

rt 4486.09 111.68

pt 146.56 3418.52

kt 142.88 3506.62

4
mt 10920.24 100.00

rt 2066.19 528.52

pt 67.50 16177.60

kt 65.81 16594.53

5
mt 36634.11 100.00

rt 9700.58 377.65

pt 316.92 11559.54

kt 308.95 11857.45

Domains Estimators MSE PRE

6
mt 6701.95 100.00

rt 5141.50 130.35

pt 167.97 3989.92

kt 163.75 4092.74

7
mt 10226.65 100.00

rt 2148.72 475.94

pt 70.20 14568.22

kt 68.43 14943.66

8
mt 24287.42 100.00

rt 1101.00 2205.94

pt 35.97 67522.16

kt 35.07 69262.32

9
mt 6489.34 100.00

rt 5075.54 127.86

pt 165.82 3913.55

kt 161.65 4014.41
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over the other estimators such as the SME mt , SRE rt , 
and SPRE pt  across all domains. The SSPRE kt  
consistently shows reduced MSE and higher PRE, 
suggesting better accuracy and precision in estimating 
population parameters. This implies that the SSPRE kt  
gives more accurate findings by minimising MSE and 
maximizing PRE than the adapted synthetic estimators.

7.	 CONCLUSIONS
This work proposed the synthetic ratio estimator 

for small area estimation under RSS using bivariate 
auxiliary data. The incorporation of RSS into the SAE 
framework proven to be a helpful strategy, increasing 
the precision of estimates in small areas where standard 
direct sampling approaches frequently fail owing to 
insufficient sample numbers. The use of auxiliary 
information in combination with RSS enabled more 
effective data utilisation, resulting in higher estimation 
accuracy. An extensive simulation study has been 
conducted to evaluate the theoretical implications using 
artificially generated normal population in various 
settings. The simulation study examined different 
levels of variability and correlation structures on the 
effectiveness of the estimators. The simulation study 
consistently demonstrated that the suggested synthetic 
estimator kt  outperformed the SME mt , the SRE rt , 
and the SPRE pt . across various situations. Furthermore, 
the real-life applicability of the adapted and suggested 
estimators has been demonstrated using real crop 
production data, which revealed comparable 
performance benefits. The real data analysis revealed 
that the suggested synthetic estimator kt  consistently 
generated more precise and trustworthy estimates than 
the adapted synthetic estimators, making it more robust 
for practical usage in small area estimation issues, 
notably in agricultural and environmental investigations.
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