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SUMMARY

The Richards curve is frequently used to model cumulative growth in science. Recent studies have shown that the resulting
residuals in regression applications fitting the Richards curve are autocorrelated. Such autocorrelation has typically not been
taken into account in the regression model, which calls into question the subsequent statistical inferences based on the model.
This paper shows how fitting the derivative function of the Richards curve to the incremental weight gains, i.e. to the “first
differences’, may mitigate autocorrelation inherent in growth data. The procedure is illustrated on turkey growth data from
Syria. This new approach should apply to growth data in general, and to suitable poultry growth data in particular.
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1. INTRODUCTION

The Richards growth curve, also known as the
power-law logistic curve (Banks 1994), is widely used
to model the growth of natural populations (Seber and
Wild 1989). The curve has recently found particularly
widespread application for modeling growth curves of
poultry, including not only turkey (Sengul and Kiraz
2005, Ersoy et al. 2006) and chicken (Norris et al.
2007), but also partridge (Cetin et al. 2007), duck
(Knizetova ef al. 1991), goose (Knizetova ef al. 1994),
emu (Goonewardene ef al. 2003) and quail (Hyankova
et al. 2001). It also has been used to model the growth
in weight of species, such as cattle and elk
(Goonewardene et al. 2003). The Richards curve was
shown in these papers to fit data from these species
apparently adequately, using the standard regression
model assuming independent errors. However, many of
the more recent papers (e.g. Sengul and Kiraz 2005,
Cetin et al. 2007, Norris et al. 2007) recognize that the
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residuals from the regression analysis indicate that the
error terms are not independent, as assumed, but rather
are serially correlated. Even aside for any formal
statistical testing, one would have to assume logically
that consecutive cumulative weight data over time, a
natural time series, would be autocorrelated.

When autocorrelation is present, in violation of the
usual assumption of independence in a regression
model, the estimated standard errors of the parameter
estimates would be underestimated (Neter et al. 1996,
Franses 2002, Lindsey 2004). Consequently, subsequent
statistical inferences involving these standard error
estimates would be subject to question. The commonly
recommended solution to this problem is to append
some assumed correlated error structure onto the model
(see e.g. Berny 1989, Glasbey 1979, Seber and Wild
1989). However doing so adds complexity to the
analysis, and choosing a suitable model for the error
structure is no trivial task.
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The Richards curve is one of a number of
commonly used growth curves for poultry, two others
being the logistic and the Gompertz curve. These other
curves would also be expected to exhibit
autocorrelation when fitted to data. Matis et al. (2010)
recently outlined a procedure for mitigating
autocorrelation resulting from fitting the logistic model
to cumulative count data. The procedure is based on
transforming the data to first differences, and then
fitting the derivative of the logistic model to these
incremental changes. This paper applies this first
difference methodology to the Richards curve.

Section 2 develops the Richards curve from a
mechanistic basis, and reviews some of the pertinent
properties of the curve. The procedure is illustrated with
some turkey growth data from Mohammed ef al. (2010).
Section 3 develops the first difference procedure for the
Richards curve, and illustrates this new methodology
by applying it to the turkey growth data. Concluding
remarks are given in Section 4.

2. REVIEW OF THE RICHARDS GROWTH
MODEL

2.1 A Derivation and Some Properties

The Richards curve is typically given in the form

K

Y= ——
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(1)
with parameters K, B, C, D > 0. For subsequent

purposes, we outline a mechanistic derivation of the
model, given in Matis and Kiffe (2000, p. 50).

Let Y(¢) denote population size at time #, and

Y'(¢) its derivative. Consider the mechanistic model
Y'(1) = a¥(t) — bY(0)*"! Q)
with parameters g, b and s > (. Parameter a in the
linear term is called the ‘intrinsic rate of growth’, and
parameter b in the ‘density-dependent’ term is the
coefficient for slowing the growth rate. The solution,

often called the power-law logistic, is given in Banks
(1994, p.108) in the form:

K

o= [+ B @ /s )
where
K = (a/b)" and 4
B =(KY,) -1

with ¥, = ¥(0). Some investigators state the Richards
curve in form (3). Clearly (3) is equivalent to (1) with
C = as and D = 1/s, hence the intrinsic rate a in (2) is

a=CD. (5)
That K in (4) is the equilibrium population size, also
called the ‘carrying capacity’, is easily seen by setting
Y’ (£) = 0 in (2). Many of the poultry papers focus on
the point of inflection, denoted ;.. One can show that

1= [log (BD)J/C. ©)
The population size at this time, Y5 is
Y,=K/ (I + D", (7

Note that for the (ordinary) logistic growth curve,
with D = 1, the point of inflection occurs at population
size K/2. This is a useful property for model
discrimination, often even visually. As an example, it
is visually apparent that the point of inflection for some
growth curves of the size of certain muskrat populations
in the Netherlands, given in Matis ef al. (1997), exceeds
the midpoint K/2. Therefore the Richards curve was
used as an alternative to the logistic curve to describe
the growth of these muskrat populations.

2.2 Statistical Regression Model

We fitted the Richards curve in (1) to data sets
using standard nonlinear least squares (Neter et al.
1996), as implemented in SPSS (2007). Letting ()
denote the observed (mean) population weight at time
t, it is standard practice to assume regression model

y)=x+e (8)

where £ denotes an independent random error term with
constant variance.

We note, however, that an observed population
growth curve is a time series, and due to its cumulative
nature, its observations are likely to be serially
correlated. Serial correlation, also called
autocorrelation, violates the assumption of independent
observations in regression model (8). A consequence of
such violation is that the estimated standard errors of
the parameter estimates from standard nonlinear least
squares would be too small, indicating greater apparent
precision than warranted (Neter ez al. 1996). Therefore,
after fitting model (8) to data, we test for serial
correlation using the standard Durbin-Watson d statistic.
The expected value of d under the null hypothesis of
no serial correlation is d = 2 (Neter et al. 1996).

The Richards curve is challenging to fit to data as
it has four parameters, K, B, C, and D (Seber and Wild
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1989). Ghosh ef al. (2011) reviews the general
estimation problem for the Richards curve, and
proposes a new method for parameter estimation when
there are sufficient data. We have utilized a simplified
fitting procedure in previous applications of the power-
law logistic model by fixing D at assumed integer
values (see e.g. Matis et al. 1997). One could
implement this practical iterative procedure with the
present data as follows: 1. Fix D = 1 and fit the
(ordinary) logistic curve, and 2. Continue fixing D at
successively larger integer values, always fitting the
resulting conditional Richards curve with three
parameters, until the mean squared residual (MSR) is
reduced to an acceptable value.

2.3 Examples with Cumulative Turkey Growth
Data

The Richards curve has been applied successfully
to turkey growth data in the literature. Sengul and Kiraz
(2005) fits the curve to cohorts of 144 male and of 144
female white turkeys from birth to 18 weeks of age, and
estimates D to be 10.0 and 11.1, respectively. Ersoy et
al. (2006) fits the curve to cohorts of 41 male and 62
female American Bronze turkeys from 11 to 24 weeks
of age, and estimates D to be 18.83 and 18.24,
respectively. These papers followed the generally
accepted practice of assuming regression model (8).

Mohammed er al. (2010) gives data on the
observed growth curves for a flock of 2000 male
turkeys raised starting in May 2008 in Syria. Random
samples of size 100 were taken from the flock weekly
starting at age 7 to age 24 weeks. Data on the mean
weights of the samples are given in Table 1 and

illustrated in Fig. 1. This figure also illustrates the curve
with D=1 in (1) (i.e. the ordinary logistic curve) fitted
to the growth data set assuming regression model (8).
The curve fits the data set well visually, with MSR =
123288. The parameter estimates (with standard errors)
are: for K, 26504 (827); for B, 23.0 (1.7); and for C,
0.200 (0.009). The fitted curve overestimates the
weights at the initial times, which suggests that the
logistic curve overestimates the point of inflection.
Therefore we proceeded to implement the iterative
process for D =5, 10, 50, 100, 500 and 1000. The mean
squared residual (MSR) and parameter estimates for
this sequence of Richards curves are given in Table 2.
The MSR decreases monotonically with increasing D.
Because the decrease in MSR is minimal after D = 100,
and to be somewhat consistent with previous results in
the literature, we deemed the model with D = 100 to
give an adequate fitting for the present data.
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Fig. 1. Observed Weight (kg) vs Age (wk) with Fitted Richards
Curves for D =1 (solid line) and D = 100 (dashed line)

The fitted curve with D = 100 is also given in
Fig. 1. Though the curve with D = 100 does not differ
by much visually from that with D = 1, the Richards

Table 1. Mean Cumulative and Incremental Growth Weights

Age Cumulative Age Cumulative Midpoint Increment Midpoint Increment
(wk) Wt (gm) (wk) Wt (gm) (wk) Wt (gm) (wk) Wt (gm)
7 3195 16 13685 6.5 870 15.5 1195

4245 17 14900 7.5 1050 16.5 1215

9 5450 18 16000 8.5 1205 17.5 1100
10 6580 19 17170 9.5 1130 18.5 1170
11 7700 20 18270 10.5 1120 19.5 1075
12 8934 21 19425 11.5 1234 20.5 1155
13 10100 22 20500 12.5 1166 21.5 1075
14 11310 23 21630 13.5 1210 22.5 1130
15 12490 24 22755 14.5 1180 23.5 1125
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Table 2. Mean Squared Residual, MSR, and Parameter
Estimates for Fitted Richards Curves

A. From Cumulative Growth Data
D MSR | K B C Lyr | Y(inp)
1 (12328826504 | 22.99 | 0.200 | 15.58 | 13126
5 | 46105|30968 | 1.255 | 0.122 | 15.05 | 12440
10 | 3824831966 | 0.536 | 0.113 | 14.86 |12327
50 | 32367|32897 | 0.094 | 0.105 | 14.82 | 12222
100 | 3165933027 | 0.046 | 0.104 | 14.81 | 12214
500 | 3109733126 | 0.009 | 0.103 | 14.79 | 12192
1000 | 3102633139 | 0.005 | 0.103 | 14.79 | 12120
B. From Incremental Growth Data
D MSR Xoax b C
1 4505 1194 15.63 0.089
5 4141 1198 15.23 0.070
10 4075 1198 15.16 0.068
50 4017 1199 15.10 0.065
100 4009 1199 15.09 0.065
500 4003 1199 15.08 0.065
1000 4002 1199 15.08 0.065

curve tends to have uniformly smaller residuals. These
residuals yield MSR = 31659, which represents a large
(over 74%) reduction in MSR as compared to the
D =1 model. The estimated parameter values for the
fitted curve with D = 100 are: for K, 32023 (960); for
B, 0.046 (0.001); and for C, 0.104 (0.004). Though the
MSR is reduced substantially, the three pairwise
correlations between the parameter estimates are larger
in every case for the fitted model with D = 100. This
leads to mild multicollinearity, which tends to inflate
the standard errors. Nevertheless the parameter
estimates for the model with D = 100 generally tend to
have smaller comparable standard errors than for
D = 1. If the assumed regression model in (8) were
correct, one could use these parameter estimates with
their standard errors from the curve with D = 100 for
subsequent statistical inferences, e.g. for confidence
intervals for the parameters.

The residuals for the fitted logistic growth curve,
with D = 1, are illustrated in Fig. 2. It is easy to
recognize visually that autocorrelation is present, as
there is a strong pattern with only 4 runs (i.e. changes
of sign). The Durbin-Watson test statistic is d = 0.34,
which is highly significant (as d < dj (s = 1.05). The

residuals from the Richards curve with D =100 are also
given in figure. These residuals tend to be noticeably
smaller in absolute value, resulting in the reduced MSR,
however autocorrelation is again striking as this curve
also has only 4 runs. The Durbin-Watson statistic is
d = 0.42, which is just a bit larger than before but still
well below d| (s = 1.05, and hence highly significant
statistically. It is clear therefore that the independent
error assumption in model (8) is not tenable for the
Richards curve, and hence that the statistical inferences
based on these estimates are not valid. Other
investigators (e.g. Norris ef al. 2007) have pointed out
the same problem of serial correlation without offering
any solution.
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Fig. 2. Residuals (gm) vs Age (wk) from Fitted Richards Curves
with D =1 (solid line) and D=100 (dashed line)

3. USE OF THE DERIVATIVE MODEL WITH
FIRST DIFFERENCES

3.1 First Differences Procedure

A simple and well-known procedure for analyzing
time series data in economics is to transform the data
by taking “first differences” (Neter ef al. 1996). In this
procedure, one calculates the differences between
consecutive values of the independent variable and also
the differences between consecutive values of the
dependent variable. Under certain conditions, most
notably under a first-order autoregressive error
assumption, the residuals from a regression model
relating these first difference variables would no longer
be serially correlated (Neter et al. 1996).

An adaptation of this standard procedure is
proposed for the logistic growth model in Matis ef al.
(2010). With y(¢) denoting the observed cumulative
weight, let 7,,,; denote the average of consecutive times
tand (t + 1), i.e t,,,= (2t + 1)/2. Let x(z,,,;) denote the
difference between the consecutive weights at their
midpoint, i.e. x(7,,;,) = y(t + 1) — y(¢). These first
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differences of the cumulative weights for equally
spaced data are proportional to the estimated
derivatives of the function, and hence the differences
were fitted to the derivative of the logistic curve. The
procedure is shown to mitigate the autocorrelation
problem for the logistic model in Matis et al. (2010).
We now investigate its application to the Richards
curve. We derive the derivative model for the Richards
curve, apply it to the first difference data, and then test
whether the procedure reduces the autocorrelation
previously observed in the cumulative data.

3.2 The Derivative Model

Let X(7) denote the derivative of Y(¢). It follows
from (1) that
K-B-C-D-¢ "
(1+B'e_C'I)D+1

Let ¢,,,, denote the time at which X(7) reaches its
maximum. One can show that

t,..= log (BD)/C, (10)

X(0) = )

which is equivalent to the point of inflection, 7, in
(6) for the ¥(¢) cumulative weight model. The value at
Lnax> denoted X, 1S

___KkCc

Model (8) can be reparameterized by substituting (10)
and (11) into (9) to yield

an

max

A+D P . x, o Clt=tna)

X = (1+ ¢ CTna) / ) D1

(12)

Though (12) is less elegant than (9), response
function (12) has naturally interpretable parameters,
X, and 2,,... The other parameter, C, is a rate constant
related to the intrinsic rate of growth in (5). This
parameterization is useful for iterative nonlinear least
squares procedures, as reasonable initial values for X, .
and 7, are easy to obtain by inspection of the data.
The parameters are also stable and hence readily
estimable (Ross et al. 2010). Function (12) with D =1
reduces to the logistic density function form of the
model given in Matis et al. (2010).

Derivative function (12) can be fitted to the first
differences of the previous data sets, assuming again
standard regression model

x() = X(t) + € (13)

where as before £ denotes an independent random error
term with constant variance. The derivative model X(¢)
can be implemented again using the iterative process
on D, and the assumption of independent errors can
again be tested with the Durbin-Watson d statistic.

3.3 An Application to Incremental Turkey Growth
Data

The incremental weight gains are plotted in Fig. 3A.
These first differences constitute a much better
diagnostic tool for model lack-of-fit. Note, for example,
that the weight gains at 1 = 6.5 and ¢ = 8.5 stand out in
the figure and might merit further investigation. Such
unusual observations, which may be of scientific
interest, tend to be masked in the cumulative data
model. For example, these unusual weight gains are
hardly noticeable in the cumulative graphs in Fig. 1.

The model with D = 1, i.e. the logistic derivative
model, fits the data set well, with MSR = 4505. The
parameter estimates are: for X, , 1194 (24.3); for ¢,,,,.
15.63 (0.75); and for C, 0.089 (0.014). However the
Richards derivative models with D > 1 fit better, with
the curve with D = 100 reducing the MSR to 4009. This
value appears from Tables 2 to be very close to the
global minimum, and hence the curve with D = 100 is
regarded as adequate for the data. The parameter
estimates for this fitted curves are: for X, ., 1198
(22.7); for t,,,., 15.09 (0.68); and for C, 0.065 (0.009).
Because the parameter estimates are stable, there is no
problem with multicollinearity, as the largest of the
three correlation coefficients between parameter
estimates is only 0.711, as opposed to the case for the
cumulative weights, for which all three correlation
coefficients exceed 0.810.

The residuals for the fitted derivative curve with
D =1 are plotted in Fig. 3B. The Durbin-Watson
statistic is d = 1.67, which indicates that there is no
evidence of serial correlation (as d; (s = 1.53). The
residuals for the fitted curves with D = 100 are also
plotted in Fig. 3B, and are a bit smaller on average than
those for D = 1, leading to the reduced MSR. The
Durbin-Watson statistic is d = 1.78 which also indicates
the lack of serial correlation.
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Fig. 3. A. Observed Incremental Weight Gains (gm) vs Age (wk)
with Fitted Richards Derivative Functions for D =1 (solid
line) and D = 100 (dashed line). B. Residuals (gm) vs Age
(wk) from Fitted Functions with D =1 and D = 100.

4. DISCUSSION

4.1 General Comparisons of Cumulative and
Incremental Weight Gain Approaches

It is clear in this example with turkey data that the
use of the derivative models with the first differences
has achieved the objective of reducing autocorrelation
observed in the Richards model with the cumulative
data. This result is immediately apparent visually by

comparing the distinct pattern of residuals in Fig. 2 to
the apparent lack of pattern in Fig. 3B. One could make
statistically valid comparisons using this first
differences approach, due to the absence of significant
autocorrelation, e.g. to investigate whether there are
gender differences in the underlying parameters, such
as X,

We do not claim that every (cumulative) Richards
growth curve application results in significant serial
correlation. However we do suggest that sizeable
“random errors” might occur logically at various times
in the growth cycle due to a number of factors, and that
serial correlation would result naturally as such
perturbations are accumulated over time. This is
apparent in our turkey data, and probably as well as in
the other instances of the problem pointed out in the
literature. Similarly, we do not claim that this procedure
will always eliminate problematic serial correlation
which might be present in the cumulative data. For
example, we also investigated the growth data for two
breeds of native chickens displayed in Norris et al.
(2007), which were noted to have serial correlation.
Based on our approximate readings from their graphs,
the Durbin-Watson statistics for the residuals, from the
Richards curve with D = 100 fitted to the cumulative
data, for these breeds are d = 0.54 and d = 0.47, which
clearly indicate serial correlation. The corresponding
test statistics fitting model (12) to the first differences
are d = 2.76 and d = 0.58. The value in the first case
rejects serial correlation, as expected, but the value in
the second case indicates that serial correlation is still
present.

However we do propose fitting model (12) to the
first differences as a general method for growth curve
analysis. It is reasonable to assume that the x(7) weight
gains in model (13) could be independent. Under that
assumption, however, the y(¢) cumulative sizes could
not be independent, as assumed in (8), as each y(¢) is
the sum of the past x(#). Though we do not claim that
the residuals of x(¢) will be uncorrelated, one can easily
investigate empirically for any given data set whether
the serial correlation has been substantially reduced
under this transformation. The important point is that
when there is serial correlation in the analysis of the
W(t) cumulative sizes, the x(t) incremental weight gains
fitted to the new derivative model, which retains
equivalent parameters, are likely to have far less serial
correlation.
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4.2 Some General Considerations using the First
Differences Approach

This paper considers the common case where the
(f) observations are equally spaced over time. In cases
where that is not so, one could use a slight variation in
which the dependent variable is the estimated rate of
change, say r(f) = x(¢) / At, where At is the size of the
time interval. Derivative model (12) could be fitted
directly to the r(¢).

Parameter D is usually difficult to estimate as
mentioned previously. Although it is estimable in
theory, the estimation of D is usually ill-conditioned in
practice. As noted in Seber and Wild (1989, p 336),
“Curves with quite different (D values) look very
similar, and we would anticipate difficulty in
distinguishing between them with even small amounts
of scatter”. This is apparent in the present example,
because as apparent in Table 2, large increases in D
result in only tiny decreases in MSR. With such a flat
MSR surface, any estimate of D would have enormous
standard error. In these two problems, one might note
that as D approaches infinity, the point of inflection,
Y, in (7) approaches K/e.

4.3 Summary of Case for using First Differences

If experimenters were aware of both the
cumulative and the incremental model approaches, they
might prefer the cumulative model approach using the
Richards curve in (1) because its graphs obviously tend
to be smoother. We summarize the broader case for
using the derivative model in (12) as an alternative to
the cumulative model as follows:

1. Model “lack-of-fit” is more apparent with the
incremental data than with the cumulative data,
making the former a better diagnostic tool for
finding outlying or unusual observations which
may have heuristic value and also suggest areas
for future model refinements.

2. Model (12) for the incremental data is based on
naturally interpretable parameters, and initial
estimates of X, and t,,,. are usually apparent in
the data. These parameters are also stable, which
yields relatively precise estimates.

3. When there is an indication of serial correlation
in the residuals from the cumulative model, the
residuals from the incremental model may have

far less serial correlation. Statistical tests should
be used to verify this assertion, and if it is correct,
a data analysis based on the incremental model
should be considered.
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