
1.	 INTRODUCTION
Any data that has each observation linked to the 

coordinate of the location from which it was collected 
is referred to as spatial data or geo-referenced data. 
Finding the relationships between variables is one 
of the goals of spatial analysis. Spatial data can be 
conceptualized as the realization of random variables 
that are generally distributed over a two-dimensional 
surface. In the linear regression model-based method, 
when the parameter of interest (regression coefficients) 
is spatial in nature, regression coefficients do not 
remain fixed over space. This is referred to as spatial 
non-stationarity. Therefore, the ordinary least square 
(OLS) regression model-based estimation method does 
not take into account the location for investigating the 
relationship between the variables. So, an alternative 

estimation strategy is needed. Geographically weighted 
regression model can capture this spatially varying 
relationship between dependent and set of explanatory 
variables and can tackle this spatial non-stationarity 
problem efficiently (Fotheringham et  al., 1998). 
Although a particular model should contain all pertinent 
covariates but too many insignificant covariates make 
the model unnecessarily complex. Therefore, it is 
important to choose few important covariates having 
a high correlation with the study variable and remove 
those that are not significant. Leung et  al. (2000) 
proposed a stepwise procedure to select important 
independent variables under geographically weighted 
regression (GWR) framework. The authors used the 
ratio of residual sum of squares and p-value method 
for choosing important variables. Nakaya et al. (2009) 
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proposed a generalised framework for semiparametric 
geographically weighted regression (S-GWR) that 
allow mixing geographically varying and fixed 
coefficients in a generalised linear model. In this 
proposed framework, a model selection algorithm was 
explained in detail and the practical implementation 
was done on the developed GWR 4.0 software (https://
gwr.maynoothuniversity.ie/gwr4-software/). Wheeler 
(2009) introduced a penalized form of GWR known as 
‘geographically weighted lasso’ (GWL) which adds a 
constraint on the magnitude of the estimated regression 
coefficients to limit the effects of explanatory variable 
correlation. The proposed GWL also performs local 
model selection by potentially shrinking some of 
the estimated regression coefficients to zero in some 
locations of the study area. The authors developed 
method stabilizes regression coefficients in the 
presence of collinearity and produces lower prediction 
and estimation error of the response variable than 
does GWR. Fotheringham et  al. (2017) proposed 
multiscale GWR approach where model calibration 
and bandwidth vector selection are conducted using 
a back-fitting algorithm. The authors compared the 
performance of both GWR and multi scale GWR using 
simulated datasets and it was found that multiscale 
GWR is superior in replicating parameter surfaces with 
different levels of spatial heterogeneity. Comber et al. 
(2018) proposed a hyper-local GWR which extends the 
traditional GWR model that simultaneously optimizes 
both local model selection and local kernel bandwidth 
specification. The developed hyper-local GWR 
approach evaluates different kernel bandwidths at 
each location and selects the most parsimonious local 
regression model. Comber and Harris (2018) developed 
a geographically weighted elastic net logistic regression 
model that provides a robust approach for local model 
selection and alleviating local multicollinearity. Model 
selection based on Akaike information criterion (AIC) 
evaluating generalization error (i.e., it minimizes 
expected error for test samples) is reasonable. AIC 
is a very good model selection criteria for choosing 
significant covariates which is not properly explored 
on several studies mentioned above. AIC helps to 
compare several candidate models and select a model 
that explains the greatest amount of variation in the 
dependent variable using fewest number of covariates 
fitting several regression models. The lower the AIC, the 
better the fit of the model. So, in this study AIC metric 
has been used for selecting significant covariates. As an 

illustrative example, consider an agroforestry system, 
where the estimation of total carbon sequestration is 
of paramount importance for understanding ecosystem 
services and mitigating climate change. Several studies 
have been carried out to elucidate the relationship 
between various agroforestry parameters, including 
diameter at breast height (DBH), stem biomass, 
branch biomass, leaf biomass, below-ground, and 
above-ground biomass, and their collective influence 
on carbon sequestration levels (Sharma et  al., 2020). 
However, the presence of multicollinearity among these 
variables poses a challenge to traditional regression 
methods, such as OLS, leading to imprecise estimates. 
As a matter of fact, these variables are mostly spatial 
in nature exhibiting spatial non-stationarity. To address 
this issue, GWR model can be employed in agroforestry 
studies, which excels in capturing spatially varying 
relationships efficiently and offers a more efficient 
solution to the inherent spatial non-stationarity in the 
data. The objective of the current study is to investigate 
the spatially varying relationship among different 
explanatory variables with the dependent variable. To 
achieve this, we employed a forward stepwise variable 
selection procedure within the GWR model framework 
to identify significant covariates. Once the final 
GWR model was selected through this procedure, we 
developed an estimator for the finite population total 
using the selected GWR model under a model-based 
prediction approach. However, in real-life scenarios, 
the study variable (y) is often unknown at the population 
level. Therefore, we conducted a simulation study 
where samples were drawn from the population. From 
each of these samples, the best model was iteratively 
identified, and the proposed spatial estimator was 
calculated under both the forward stepwise GWR and 
forward stepwise OLS setups. These estimators were 
then compared.

1.1	 Geographically Weighted Regression
The linear regression model follows certain model 

assumptions, which include the study and auxiliary 
variables are assumed to be linearly related. In addition, 
error variances are independent and identically 
distributed with zero mean and constant variance. 
The assumption of independence of observations is 
often violated in the case of classical linear model-
based estimation. The linear regression model does 
not take into account the location for investigating the 
relationship between the variables that is the relationship 
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between dependent and auxiliary variables is remains 
the same in each geographic location (Cressie, 1991).

For dealing with the problem of spatial non-
stationarity, Brunsdon et al. (1996, 1998) proposed a 
model, known as geographically weighted regression 
(GWR). GWR is a local spatial statistical technique 
in which each of the model parameters (regression 
coefficients) is estimated at each geographic location in 
the data(Lu et al., 2014, Paul et al., 2023a, Saha et al., 
2023, Paul et al., 2024).

Let ‘ ( )i ilatitude ,  longitudeik ’ denotes the 
geographical location of thi  unit in space. We can define 
a GWR model as

( ) ( )
1

; 1,2,..., ;
p

i o i i il il
l

y k k x e i nβ β
=

= + + =∑ � (1)

where, iy  is the value of dependent variable at 
location ‘ ik ’, ( )0 ikβ is the intercept parameter of the 
location point ‘ ik ’, ( )l ikβ is the value of thl parameter 
at location point ‘ ik ’, ilx  is the value of thl auxiliary 
variable at location ‘ ik ’ and ie  is the independent and 
identically distributed random error term with mean ‘0’ 
and constant variance 2σ .

The parameters of the GWR model are estimated 
using weighted least squares ( )WLS  with weights of a 
particular observation is varying from location to 
location over the regression points. Suppose that the 
weight of the thi  observation with respect to location 
( )jk  is ( )i jw k . Hence, the geographically weighted 
regression coefficients of the GWR model for each of 
the location ( )jk  is given as

( ) ( ){ } ( )1ˆ T T
j j jk k k

−
=gwr X W X X W yβ � (2)

where, ( ) ( ) ( ) ( )( )1diag ,..., ,...,j j i j n jk w k w k w k=W   

is an ( )n n×  spatial weight matrix contains the 
geographical weights of each of the ‘n’ observations for 
the location point ( )jk  in its leading diagonal and 
whose off-diagonal elements are all zero. These weights 
will vary with location ‘ jk ’, which distinguishes GWR 
from traditional weighted least squares in regression 
analysis where the weighting matrix is constant. These 
weights are computed from a spatial weighting function, 
known as a kernel function. In the present study, we 

have used the Exponential kernel function which is 
given below:

( ) ( )
exp

i j
i j

d k
w k

b

  
  = −
  
  

� (3)

where, ( )i jd k  is the distance between the thi  

sample observation and the regression point jk , ' 'b
represents the bandwidth, which is a distance beyond 
which weight of the observations is assigned 0 value 
(Paul et al., 2023b, 2024, Saha et al., 2024).

Statistical techniques like Cross-Validation (CV) 
and Akaike-Information Criterion (AIC) are used 
to determine the most suitable value of bandwidth. 
Optimal bandwidth value is that which minimizes either 
of these two criteria. In this study, we have used CV 
approach for finding the optimum value of bandwidth 
based on sample values of the dependent variable and 
its formula (Fotheringham et al. 2002) is given by

( )
2

1
ˆCV

n

i i
i

y y b≠
=

  = −∑ � (4)

where ( )ˆ iy b≠  is the value of y  at point i  predicted 
when calibrating the model with all the observations 
except iy .

Hence, the estimate of regression coefficient of the 
GWR model at all the observed location that is
( )1, , i n= …  is given as
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2.	 MATERIALS AND METHODS
In the following subsections, forward stepwise 

variable selection method under GWR framework has 
been given. A spatial estimator of finite population total 
using the model-based prediction procedure has been 
proposed under the forward stepwise GWR setup.

2.1	 Forward Stepwise Covariate Selection under 
GWR Framework
We have further extended the forward stepwise 

variable selection procedure proposed by Leung et al. 
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(2000). we have incorporated AIC criteria for choosing 
significant covariates under the GWR framework. 
Under the assumption that error terms 1 2, , , ne e e…  are 
independently and identically distributed as a normal 
distribution with mean zero and constant variance 2σ  
and ( ) ( )ˆi iE y E y=  for all 1, , i n= … . Let, X  be a 

( )1n p× +  matrix with ( )1 21T
i i ipx x x=i x  be the 

thi  row of X  matrix, 1,...,i n= .
The model fitted value of study variable iy  at 

location ik  is given as

( ) ( ){ } ( )
1ˆˆ T T T T

i i i i i iy k k k
−

= = X W X X W yβx x .�(6)

Let, [ ]1 2
ˆ ˆ ˆ ˆ... T

ny y y=Y is the vector of model 

fitted values and [ ]1 2ˆ ˆ ˆ ˆ... T
ne e e=e  is the vector of 

residuals. Then, we can write ˆ =Y S Y ,

where, 

( ){ } ( )

( ){ } ( )

( ){ } ( )

1

1 1 1

1

1

T T T

T T T
i i i

T T T
n n n

n n

k k

k k

k k

−

−

−

×

 
 
 
 
 =
 
 
 
 
 

X W X X W

S X W X X W

X W X X W





x

x

x

 is 

the hat matrix. � (7)
The vector of residual can be expressed as
( ) ( ) ( )ˆˆ = − = − = −e Y Y Y S Y I S Y , where, I  is an 

identity matrix of order ' 'n . Residual sum of square 
(RSS) and Akaike information criterion (AIC) can be 
written as

( ) ( ) ( )
( ) ( )

2

1

ˆ ˆˆ ˆˆRSS
n TT

i i
i

TT

y y
=

= − = = − −

= − −

∑ e e Y Y Y Y

Y I S I S Y  
and� (8)

( ) ( ) ( )ˆAIC 2 ln ln 2 trn n nσ π= + + + S 	 (9)

where, n  is the sample size, σ̂  is the estimate of 
the standard deviation of the error term, ( )tr S  is the 
trace of the hat matrix S  of an observed variable y  on 
the estimated variable ŷ .

A covariate is said to be important if the AIC is 
significantly reduced when it is added to the model. 
We have used a forward stepwise variable selection 

method for choosing important covariates under the 
GWR setup. The steps are as following:

Step 1: Fit a GWR model having only the intercept 
term

( )0 ; 1,...,i i iy k e i nβ= + = .� (10)
For a given weight matrix, the estimate of GWR 

model parameters is obtained by Eq. (2) and the Akaike 
information criterion is then calculated. Then, an 
estimate of intercept of the model is given by
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Under Eq. (10), the hat matrix is given by the 
following expression
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Step 2: Let, 1 2, ,..., px x x  be the candidate covariates. 
One by one all the covariates were selected for their 
significance level. Variables that are not significant will 
not be used in constructing the GWR model. For each 

; 1,...,lx l p= , GWR model is fitted individually,

( ) ( )0 . ; 1, ..., ;
1,..., .

i i i il ily k k x e l p
i n

β β= + + =
= � (12)

Model parameters are estimated by Eq. (2). Here, 
X  matrix is of order ( )2n×  and is given by

1 2

1 1 1
; 1, ...,

T

l l nl

l p
x x x
 

= = 
 

X




.

The AIC and RSS is of the form,

( ) ( ) ( ) ( )( )ˆAIC 2 ln ln 2 tr
l lx xn n nσ π= + + + S  and

( ) ( )( ) ( )( )l l l

T
T

x x xRSS = − −Y I S I S Y

where, ( )lxS  is of the form similar to Eq. (7).
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In literature, AIC has been considered as one of the 
best criteria for choosing the important covariates. 
Here, we recommend to find the best performing model 
that produces the lowest AIC value, and permanently 
include the corresponding covariate in subsequent 
model construction process. Accordingly, GWR model 
is fitted individually for each covariate ( )lx ,the 
quantity ( )AIC

lx  has been computed for each covariate 

and choose that covariate for which ( )AIC
lx  has the 

smallest value.
Suppose,

( ) ( ){ }
0 1

AIC min AIC
ll xx l p≤ ≤

= .� (13)

So, we choose first 0l
x  to enter the model, because 

it has the smallest ( )0lx
AIC  value, which corresponds to 

better fit of the model.
Step3: Sequentially, select a variable from the 

remaining ( )1p −  covariates ( )0lx l l≠  to construct 
new models with the permanently included covariates.

Add each of the ( )0lx l l≠  to the model as below

( ) ( ) ( )
0 00 . .i i i i il il l ily k k x k x eβ β β= + + + � (14)

where, ( ) ( )0 1, ..., 1 ; 1, ...,l l p i n≠ = − = .
Then, calculate the AIC as following

( ) ( ) ( ) ( )( )
( ) ( )

0 0, ,

0

ˆAIC 2 ln ln 2 tr ;

1, ..., 1 ; .
l l l lx x x x

n n n

l p l

σ π= + + +

= − ≠

S
� (15)

Then, choose the covariate that results in the 
smallest ( )0 ,l lx x

AIC  value.

Suppose,

( ) ( ){ }
0 1 0

0, ,1 1
AIC min AIC ;

l l l lx x x xl p
l l

≤ ≤ −
= ≠ .� (16)

So, we choose 1l
x  as next permanently included 

variable as it has the smallest value of the quantity 

( )0 ,
AIC

l lx x .

Step 4: Repeat Step 3 until no covariates among 
the candidate variables are entering into the model. The 
model at this stage with the chosen covariates is the 
final GWR model.

2.2	 Estimation of the Finite Population Total under 
Spatial Non-stationarity
Under the model-based parameter estimation 

method in sample surveys, let us consider a finite 
population U  of size N . Let,  , 1, , iy i N= …  denotes 
the value of the study variable associated with the thi  
unit of the population of size N . Let, X  be a 

( )1N p× +  matrix of auxiliary variable with 

( )1 21T
i i ipx x x=i x  be the thi  row of X  matrix. It 

is assumed that values of the auxiliary variables are 
known for each unit of the population and there exist a 
linear relationship between the study and auxiliary 
variables. Let, the population total be denoted as

total i
i U

Y y
∈

=∑ . In sample survey, let, a sample s  of size 

n  is drawn from the population by an equal probability 
sampling design that is SRSWOR.

The population total can be partitioned into two 
components as below

( )total i j s s
i s j s

Y y y Y Y
∈ ∈

= + = +∑ ∑ � (17)

where, sY  is the sum total of the observed values of 
the study variable iy  consisting of n  sampling units of 
a sample s  which is known and sY  is the sum total of 
non-sampled units of size ( )N n−  denoted by s  which 
is unknown.Under the model-based prediction method 
(Royall 1970, 1978; Royall and Cumberland 1981; 
Valliant et  al. 2000), the problem of estimating the 
population total denoted by totalY  is equivalent to 
predicting the value of non-sampled units which is 
expressed as j

j s
y

∈
∑ . Therefore, under the usual model-

based prediction method, an estimator of population 
total can be expressed as ˆ ˆi j

i s j s
Y y y

∈ ∈
= +∑ ∑ , where 

ˆ jy  is predicted value of the jth unobserved non-sample 
unit under the working model.

In many surveys, population shows spatial non-
stationarity in the relationship between the dependent 
variable and covariates, in that situation ordinary least 
square regression model-based estimation procedure 
failed to capture the spatially varying relationship 
among the variables. To deal with the problem of 
spatial non-stationarity, we have used GWR model for 
prediction of unobserved population units (Paul et al., 
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2022, Saha et al., 2024).The GWR model selected at 
the final stage of the forward stepwise variable selection 
procedure for the sample data has been used for 
prediction of unobserved population units. Therefore, 
the proposed spatial estimator of finite population total 
under spatial non-stationarity using forward stepwise 
GWR is given as

( )forward_GWR gwr.nsˆˆ T
i j j

i s j s
Y y k

∈ ∈

= +∑ ∑x β � (18)

where, ( ) ( )( ) ( )1.ˆ gwr ns T T
j s j s s j sk k k

−
= X W X X W yβ

is the estimate of regression coefficient at thj  non-

sampled location ( ) ;  1, , jk j N n= … − ,

( )

11 12 1

1 2

1 2 1

1

1

1

p

s i i ip

n n np n p

x x x

x x x

x x x
× +

 
 
 
 =
 
 
 
  

X









 ,

( ) ( ) ( ) ( )( )1diag ,..., ,...,j j i j n jn n
k w k w k w k

×
=W  is 

the spatial weight matrix of order ( )n n× , where each 

diagonal element ( )i jw k  is the geographical weight of 
thi  observation relative to the location jk . So, each 

diagonal element represents the geographical weight of 
each of the ' 'n  sampled data points to the thj  non-
sampled point.

Forward stepwise variable selection is frequently 
used for variable selection under usual OLS regression 
framework. For comparison of proposed forward 
stepwise GWR based spatial estimator, similar 
prediction-based estimator can be written based on 
model obtained by forward stepwise OLS variable 
selection is given as

forward_OLSˆ ˆi j
i s j s

Y y y
∈ ∈

= +∑ ∑ .� (19)

2.3	 Performance Metrics for Comparing Global 
(OLS) and Local (GWR) Regression Model
The performance of the models is assessed based 

on three criteria, coefficient of determination ( )2R , 
adjusted 2R  and corrected Akaike Information 
Criterion cAIC . AICc  indicates model accuracy, the 
best regression model is the one that has the smallest 
AICc  value. Coefficient of determination is used to 

measure the goodness of fit in the model (Gujarati 
et  al., 2012). The mathematical expression of the 
coefficient of determination 2

lR  is given as 

( )

( )2 SSE
1

SST
l GWR

l
l GWR

R = − , where, ( )SSTl GWR  is the sum of 

square due to total variation and ( )SSEl GWR  is the sum 

of square due to error.

3.	 SIMULATION STUDY
In this article, both model-based and design-based 

simulation study has been carried out. Under model-
based simulation, spatial population was generated 
using variogram approach. For design-based simulation 
study, performance of the proposed spatial estimator 
of finite population total under both forward stepwise 
GWR and forward stepwise OLS was evaluated using 
real survey data of cotton yield in sub-section 3.2.

3.1	 Spatial simulation study using variogram 
approach
A spatial simulation study has been carried out to 

evaluate the performance of the two proposed estimator 
of population total developed under both forward 
stepwise GWR and forward stepwise OLS framework. 
Study variable ‘Y ’ and all the covariates ‘ X ’ have 
been generated using a spatial model by following a 
spatial variogram approach, this process generates a 
spatially correlated random field. The simulated 
variable always has a certain level of autocorrelation 
among the neighboring units. For generating the spatial 
field, first, we have created a ( )20 20×  spatial grid by 

taking all possible combinations of the ( )latitude x  and 
( )longitude y  coordinates (Santiago, 2010). For 

generating the variables, we have used the exponential 
variogram model. The model parameters were based on 
results obtained by Biswas et al. (2017, 2020). We have 
to specify the variogram model parameters in such a 
way that the value of Moran’s spatial autocorrelation 
(Moran 1948; Anselin 1995, 1996) of the study variable 
Y  should remain higher. We have used the ‘gstat’ 
package (Pebesma, 2004) from R for generating all the 
variables under study. In total four auxiliary variables 
( )1 2 3 4, , andX X X X  have been generated for the 
present study. Refer Table 1 for the spatial variogram 
model parameters. Fig. 1 shows the plot of spatially 
correlated random field of the simulated study variable 
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Y  and Fig. 2 is the plot of the fitted exponential 
variogram model to the study variable.

Table 1. Spatial variogram model parameters

Parameters Mean Sill Range Nugget 
Effect

Partial 
Sill Model

Value 30 15.48 13 0.08 15.40 Exponential

Fig. 1. A spatially correlated random field of simulated study variable 

In the present study, a population of size 400N =
has been considered as discussed in the previous section 
and from this simulated population five different 
samples of sizes  80,1 00 ,1 20,1 40,1 60n =  have been 
selected by SRSWOR sampling scheme. From each of 
these samples, the proposed spatial estimator has been 
calculated under both the forward stepwise GWR and 
forward stepwise OLS set up and compared. The 
estimators are defined in equation numbers (18, 19) 
respectively. This procedure is repeated independently 
R=1000 times. The statistical performance of estimators 
has been evaluated by computing the percentage 
relative bias (%RB), the percentage absolute relative 
bias (%ARB), percentage relative root means square 
error (%RRMSE) and percentage relative efficiency 
(%RE). A better performing estimator is the one that 
has a comparatively lower value of %ARB as well as 
%RRMSE. These performance measures were 
calculated using the following expressions

1 1

ˆ ˆ1 1%RB 100, %ARB 100,
R R

r r

r r

Y Y Y Y
R Y R Y= =

 − −
= × = ×  

 
∑ ∑

1
2 2

1

ˆ1%RRMSE 100
R

r

r

Y Y
R Y=

  − = ×     
∑  and

( )
( )

_

_

ˆRRMSE
%RE 100

ˆRRMSE

forward OLS

forward GWR
gwr

Y

Y
= ×

where, Y  is the actual population total, r̂Y  is the 
estimate of population total Y  at  ;  1, , thr r R= …
sample simulations.

3.2	 Design-based simulation study based on real 
survey data of cotton yield
This study utilized the CCE data of the cotton yield 

for the year 2012-2013 in the Amravati district of 
Maharashtra, India. The data is part of the project 
“Study to Develop an Alternative Methodology for 
Estimation of Cotton Production” conducted by the 
Division of Sample Surveys at the ICAR-Indian 
Agricultural Statistics Research Institute, New Delhi 
(Ahmad et  al., 2013, 2020). For this study, we used 
CCEs data from 316 villages in the Amravati district 
(Moury, 2020). The cotton crop is harvested in multiple 
pickings. Typically, 2-8 pickings are conducted, and 
the total yield from all pickings is considered as the 

Fig. 2. Fitting of a semi-variogram model to the study variable
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study variable ‘Y’. The yield from the first to sixth 
pickings i.e., 1 2 3 4 5 6, , , , ,X X X X X X  were used as 
auxiliary variables, all of which show decent correlation 
with the study variable (total yield). Additionally, the 
Normalized Difference Vegetation Index (NDVI), 
calculated as (NIR-R)/(NIR+R), where R & NIR are 
reflectance in the red and near infra-red band, was 
included as another auxiliary variable i.e., 7X . All 
available CCE data points were treated as the population 
and from that population four different samples of sizes 
n=30,60,90,120 have been selected by SRSWOR 
sampling scheme. From each of these samples, the 
proposed spatial estimator has been calculated under 
both the forward stepwise GWR and forward stepwise 
OLS set up and compared. This procedure is repeated 
independently R=1000 times. The simulation study and 
the statistical performance of different estimators have 
been carried out in the same manner as discussed in 
Section 3.1.

4.	 RESULTS AND DISCUSSIONS
In the following sub-sections, we have discussed 

the results of the simulation study.

4.1	 Forward Stepwise GWR Model Building
In the forward stepwise GWR model building 

procedure, covariates are added iteratively into the 
model in a forward direction (Leung et  al., 2000; 

Middya et al., 2021). The procedure selects one GWR 
model from many based on the AIC values as discussed 
in Section (2.1). The finally selected GWR model was 
then used for the prediction of population total. The 
following Table 2 shows the stepwise selection of the 
final GWR model based on the criteria discussed in 
Section (2.1).

Hence, the finally selected model from the forward 
stepwise GWR variable selection procedure is 

4 1 3~y x x x+ + . The above-mentioned steps are carried 
out in R software using the ‘GW model’ package 
(Gollini et al., 2015). While fitting the GWR model, we 
have used an exponential kernel function. Cross-
Validation(CV) approach has been considered for 
finding the optimum value of bandwidth. Fig. 3 shows 
the plot of forward stepwise variable selection 
procedure under GWR framework based on AIC 
values.

Table 2. Forward stepwise selection of best geographically weighted regression model

Steps Model number Geographically weighted 
regression models Residual sum of squares Akaike information 

criterion Selected model

Step 1 1 ~ 1y 1131.0 1565.3
4~y x

2
1~y x 1029.9 1535.2

3
2~y x 1092.6 1558.1

4
3~y x 1075.5 1551.5

5
4~y x 1034.9 1535.1

Step 2 6
4 1~y x x+ 914.4 1493.9

4 1~y x x+

7
4 2~y x x+ 1025.6 1538.4

8
4 3~y x x+ 972.7 1517.6

Step 3 9
4 1 3~y x x x+ + 861.5 1477.4

4 1 3~y x x x+ +

10
4 1 2~y x x x+ + 903.0 1496.0
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Fig. 3. Plot of forward stepwise variable selection under GWR based on 
AIC values

Table 3. Forward stepwise selection of best model under ordinary 
least square set up

Steps Model 
number

Ordinary 
least square 

models

Residual 
sum of 
squares

Akaike 
information 

criterion

Selected 
model

Step 1 1 ~ 1y 3042.5 813.7
2~y x

2
1~y x 2798.7 782.1

3
2~y x 2036.4 654.9

4
3~y x 3036.0 814.7

5
4~y x 2801.2 782.5

Step 2 6
2 1~y x x+ 2030.0 655.7

2 4~y x x+

7
2 3~y x x+ 2026.3 655.0

8
2 4~y x x+ 1955.9 640.8

9
2 4 1~y x x x+ + 1955.7 642.8

Step 3 10
2 4 3~y x x x+ + 1954.3 642.5

In forward stepwise OLS, first we have fitted the 
intercept only model. This model has an AIC value of 
813.73.After that we have fitted every possible one-
predictor model and found that the model with 2x
covariate has a statistically significant reduction in AIC 
value as compared to other models. This model has an 
AIC value of 654.98.Next, we have fitted every possible 
two-predictor model with 2x  as permanently included 
covariateand found that the model with covariate 2x  
and 4x  has statistically significant reduction in AIC 
value(640.85). Further, we fitted every possible three 
predictor model and it’s turned out that none of this 
model produced a statistically significant reduction in 
AIC value. Table 3showsthe finally selected model 
from the forward stepwise OLS variable selection 
procedure that is 2 4~y x x+ .

The above-mentioned results of the forward 
stepwise variable selection procedures are demonstrated 
through an example based on population level values 
and showed only for demonstration purposes. In real 
life situation, study variable y  shall be unknown at 
population level. Therefore, a simulation study is 
carried out to draw samples from the population and 
conduct Monte Carlo simulation. From each of these 
samples, best model is identified iteratively in each 
sample following above approach.
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4.2	 Comparison of OLS and GWR Model in Terms 
of Performance Metrics
The performance of the GWR and OLS models are 

assessed in terms of 2R , 2 Adj R , AIC, AICc and 
Residual Sum of Squares (RSS). The Table 4 shows 
that, the performance of local regression model (GWR) 
is comparatively better than the global regression 
model (OLS) because 2R  and 2 Adj R  values are 
relatively greater as compared to OLS model. The OLS 
model explains only 44.9% ( )2R  of the variance of the 

study variable Y  which is increased by 66.7% ( )2R  if 
GWR model is used. In terms of model accuracy, it is 
found that GWR model is better than the OLS model 
because AIC values are reduced from 453.89 (OLS 
model) to 405.14 (GWR model). The residual sum of 
square in the local regression model (GWR: 293.11) is 
also smaller than the global regression model (OLS: 
486.01).

Table 4. Comparison of model performance in terms of 
5 performance metrics

Model Performance 
Statistics

Ordinary Least 
Square 

Geographically 
Weighted 

Regression

2R 0.449 0.667

Adj 2R 0.426 0.582

Akaike information criterion 453.8 405.1

Corrected Akaike information 
criterion

454.7 426.5

Residual sum of squares 486.0 293.1

In order to test whether GWR model has a 
statistically significant improvement over the OLS 
model, F-test was performed. A smaller value ( )1<  of 
F-statistic supports that GWR model has better 
goodness of fit over OLS model that is GWR model 
describes the data significantly better than OLS model. 
Table 5 shows that performance of GWR model is 
better than OLS model as the F-statistic value came out 
significant.

Table 5. Goodness of fit test of geographically weighted 
regression model

F-statistic value p-value

0.7184 0.00696**

* * *Significant at level α  = 0.01

Fig. 4. Boxplot of residuals of OLS and GWR model

Fig. 5. Boxplot of estimates of GWR model parameter

Fig. 4 shows that the OLS model has comparatively 
higher residual values than the GWR model. This is 
due to the presence of spatial variability in the processes 
being modelled, which the OLS model cannot handle. 
As each of the GWR model parameters (regression 
coefficients) is estimated for each geographic location 
in the data, therefore, estimate varies for each location. 
So, based on Figure 5it can be seen that diversity in the 

2X  variable parameter estimate is comparatively less 
than other variables.

4.3	 Simulation Results of Comparing the Proposed 
Forward Stepwise GWR Model Based Spatial 
Estimator with OLS Model Based Spatial 
Estimation Approach
The simulation results of the proposed spatial 

estimator of finite population total under both forward 
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stepwise GWR and forward stepwise OLS procedure in 
spatial non-stationarity condition has been presented in 
the following table.

Table 6 shows the values of different performance 
metrics of the proposed spatial estimator of population 
total for different sample sizes under both forward 
stepwise GWR and forward stepwise OLS procedure.

The following results can be observed from Table 6:
•	 There is very negligible bias in the proposed 

spatial estimator under both forward stepwise 
GWR and forward stepwise OLS variable 
selection procedure and with an increase in 
sample size, bias decreases rapidly and the 
proposed spatial estimator becomes almost 
unbiased.

•	 Values of percentage absolute relative biases 
(% ARB) clearly shows that the spatial 
estimator under the forward stepwise GWR 
variable selection method has a smaller % 
ARB than the estimator obtained by forward 
stepwise OLS method for all the sample sizes 
considered. With increase in sample size, 
percentage absolute relative bias reduces 
considerably.

•	 We also observed that the percentage relative 
root means square error (% RRMSE) of the 
proposed spatial estimator under forward 
stepwise GWR set up was smaller than under 
forward stepwise OLS set up and reduces 
considerably as the sample size increased.

•	 Relative efficiency (RE) of the spatial estimator 
was also calculated. It was found that the 
spatial estimator obtained under the forward 
stepwise GWR variable selection methodwas 
more efficient than the estimator obtained the 
under forward stepwise OLS method and with 
increase in sample size the relative efficiency 
of the spatial estimator increases considerably.

•	 The results showed that the spatial estimator 
developed under the forward stepwise 
GWR variable selection method gives good 
performance in all sample sizes considered and 
is more reliable than the estimator developed 
under the forward stepwise OLS method under 
the spatial non-stationarity condition.

Fig. 6. Comparison of proposed spatial estimator using forward stepwise 
GWR and forward stepwise OLS method based on %ARB

Table 6. Comparison of proposed spatial estimator of population total under forward stepwise GWR and forward stepwise OLS method for 
different sample sizes

Sample size Model selection 
method

Estimate of 
Population Total

Percentage 
relative bias

Percentage absolute 
relative bias

Percentage relative root 
means square error

% RE

80 FS-OLS 10602.1 -0.384 0.728 0.901

111.2FS-GWR 10622.4 -0.193 0.656 0.810

100 FS-OLS 10600.6 -0.398 0.641 0.794

115.1FS-GWR 10622.0 -0.198 0.554 0.690

120 FS-OLS 10598.6 -0.418 0.589 0.719

120.5FS-GWR 10620.4 -0.213 0.484 0.597

140 FS-OLS 10600.6 -0.399 0.527 0.645

123.9FS-GWR 10621.2 -0.205 0.417 0.520

160 FS-OLS 10602.5 -0.380 0.476 0.580

126.6FS-GWR 10622.4 -0.194 0.368 0.458

*FS-OLS: Forward Stepwise OLS; FS-GWR: Forward Stepwise GWR.



242 Nobin Chandra Paul et al. / Journal of the Indian Society of Agricultural Statistics 78(3) 2024  231–244

Fig. 7. Comparison of proposed spatial estimator using forward stepwise 
GWR and forward stepwise OLS method based on %RRMSE

Fig. 8. Percentage relative efficiency of the proposed spatial estimator 
using forward stepwise GWR method as compared to the spatial estimator 

using forward stepwise OLS

Fig.6, Fig.7 and Fig. 8 is a visual representation of 
the % ARB, % RRMSE and RE of the proposed spatial 
estimator of population total for different sample 
sizes under both forward stepwise GWR and forward 
stepwise OLS procedure.

4.4	 Results of the design-based simulation study
The results of the design-based simulation study 

based on real survey data of cotton crop of the proposed 

spatial estimator of finite population total under both 
forward stepwise GWR and forward stepwise OLS 
procedure has been presented in Table 7.

Table 7 shows that the proposed spatial estimator 
exhibits negligible bias under both forward stepwise 
GWR and OLS methods. The spatial estimator under 
GWR consistently has a smaller % ARB and % RRMSE 
compared to OLS, with both metrics improving as 
sample size increases. Additionally, the relative 
efficiency of the spatial estimator is higher under GWR 
and increases with sample size. Figure 9(a) shows that 
the OLS model has higher residuals than the GWR 
model, indicating the OLS’s inability to capture spatial 
variability. The GWR model parameter estimates vary 
locally, leading to spatially varying estimates. As 
shown in Figure 9(b), the parameter estimates for 
variables 1X  and 4X  exhibit less variation compared 
to other variables. Figure 10 depicts the % RE of the 
forward stepwise GWR estimator over the OLS 
estimator for different sample size combinations.

Fig. 9. Box Plot of residuals of GWR and OLS model (a) and the GWR 
model parameter estimates (b)

Table 7. Comparison of the forward stepwise GWR and forward stepwise OLS based spatial estimator of population total for  
different sample sizes under design-based simulation study

Sample size Model selection method Estimate of Population Total %RB %ARB %RRMSE %RE

30 FS-OLS 9162.52 -0.059 1.318 1.673

102.01FS-GWR 9163.23 -0.051 1.290 1.640

60 FS-OLS 9170.37 0.026 0.777 0.968

106.25FS-GWR 9171.85 0.042 0.761 0.911

90 FS-OLS 9176.45 0.092 0.567 0.711

116.55FS-GWR 9177.23 0.101 0.547 0.610

120 FS-OLS 9177.86 0.115 0.451 0.566

120.94FS-GWR 9178.55 0.107 0.433 0.468
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Fig. 10. Percentage RE of the forward stepwise GWR estimator over 
forward stepwise OLS estimator for different combination of sample sizes

5.	 CONCLUSIONS
Under the condition of spatial non-stationarity, the 

assumption of independence of observations is often 
violated in the case of the classical linear model-based 
method. In that situation, geographically weighted 
regression analysis is considered most appropriate in 
describing the spatially varying relationship between 
the dependent variable and covariates. In other words, 
the local model can tackle spatial non-stationarity 
problem efficiently as compared to the global regression 
model. In the present study, both forward stepwise 
GWR and forward stepwise OLS model selection 
procedure based on AIC metric has been adopted to 
identify the best model. The final model selected from 
both the variable selection procedure was then used for 
model-based prediction of finite population total under 
the condition of spatial non-stationarity. The statistical 
performance of the proposed spatial estimator was then 
evaluated empirically through both model-based and 
design-based simulation study. Based on the results, it 
was found that the performance of the spatial estimator 
obtained by forward stepwise GWR method is much 
better than the estimator obtained by forward stepwise 
OLS method.
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