
1.	 INTRODUCTION
Time series analysis plays a pivotal role in 

fostering the socio-economic development of any 
country. The dependencies of successive realizations 
are the backbone of the time series analysis. Time 
series data often exhibit both linear and nonlinear 
characteristics. The linearity can be captured using the 
autoregressive integrated moving average (ARIMA) 
model (Box et  al., 2015) and its component models. 
Again, the realizations of a time series may be affected 
by its own values at distanced lag. This is due to long-
term dependency among the realizations. To address 
this situation, the fractionally integrated version of the 
ARIMA model, i.e., the ARFIMA model (Granger and 
Joyeux, 1980) is useful. In literature, there are numerous 
uses for the ARIMA and ARFIMA models (Paul, 2014). 
To capture both the linear and nonlinear dynamics, a 
hybrid model can be more effective. Hybrid time series 
models, one for linear components and another for 
nonlinear components are more statistically sound than 
standalone models.

The study of price fluctuation of agricultural 
commodities is an important area for researchers. 
The foundation of the Indian economy is agriculture. 
Agriculture provides livelihood to around half of the 
country’s population. Modeling and forecasting of 
the price of various agricultural commodities may 
be immensely helpful for farmers, policymakers, 
government agencies, agribusiness industries, and 
also for a large number of middlemen in the supply 
chain. Different studies are available in the literature 
regarding the modeling and forecasting of agricultural 
commodity prices using various parametric models 
(Rakshit et al., 2021; Rakshit and Paul, 2024a; Rakshit 
and Paul, 2024b).

Of recent, different machine learning (ML) and deep 
learning (DL) techniques like artificial neural networks 
(ANN), generalized neural network (GRNN), random 
forest (RF), support vector regression (SVR), recurrent 
neural networks (RNN) etc. are gaining popularity for 
time series forecasting. Paul et al. (2022) used various 
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ML techniques for modeling and forecasting brinjal 
prices and found that GRNN performed better than 
others. Garai et al. (2023) found that the wavelet-based 
RF model is the best performer among other ML models 
for modeling and forecasting onion price series of 
major Indian markets. Paul et al. (2023) studied various 
ML and DL models for forecasting cauliflower prices. 
Garai et al. (2024) used the SVR model to predict the 
price fluctuation of onion induced by the nationwide 
lockdown due to COVID-19 in India. Tamilselvi et al. 
(2024) found that the wavelet decomposed long short-
term memory (LSTM) model performed significantly 
better than other ML models for the forecasting of the 
price series of spices.

Arhar is among the pulses subject to frequent 
and significant price variations, which can also affect 
the pricing of other pulses. Given the importance 
of pulses to the Indian diet, any notable rise in arhar 
prices might have a ripple impact on the country’s 
overall food affordability and inflation rates. The top 
three arhar producer states are Maharashtra, Karnataka 
and Uttar Pradesh (Agricultural Statistics at a Glance, 
2022). Previously, some research has been done for 
the forecasting of the arhar price series. Paul et  al. 
(2015) used the ARFIMA model for modeling and 
forecasting the arhar price in Karnal, Haryana. Mitra 
et  al. (2018) followed the two-stage forecasting 
algorithm for modeling and forecasting of arhar 
price in Bhopal, Madhya Pradesh using the ARFIMA 
model in association with a structural break. In this 
manuscript, the price series of arhar for the Mumbai 
market is studied using the hybrid ARFIMA-LRNN 
(Layer recurrent neural network) model (Pwasong and 
Sathasivam, 2018). This hybrid model’s forecasting 
effectiveness is assessed, and it is confirmed that it is 
better than the standalone models.

2.	 LONG MEMORY PROCESS AND TEST 
FOR LONG MEMORY
The statistical dependency among the realizations 

of any time series is generally measured through the 
autocorrelation function (ACF). For any stationary 
time series { }ty , the autocorrelation with a time lag k 
is defined as
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For a short memory process, the decay of the 
autocorrelation is very rapid over lags (exponential 
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2.1	 ACF plot
ACF plots are commonly used to visualize the 

correlation between a series and lagged versions of 
itself. Plotting of ACF is the most popular visual 
method to identify the presence of long memory 
in the time series data. If the autocorrelation of the 
process decreases very slowly or hyperbolically (not 
exponentially), then it represents the possible presence 
of long-term persistence.

2.2	 GPH estimate
The most widely used method for long memory 

parameter estimation is Geweke and Porter-Hudak’s 
(1983) GPH statistic. This method is based on the 
spectral density at the origin

( ) 2 ~ , 0d
yf λ λ λ− → � (2)

For a stationary model  , 1,2, ,ty t T= … , the spectral 
density function can be expressed as
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where ( )fε λ  is the spectral density of , tε  which is 
a continuous and finite function on the interval [ ],  π π−  . 
The log-spectral density can be expressed as

( )( ) ( )( ) ( )
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Now, let ( )y jI λ  be the sample periodogram, then 

the log-spectral density can be expressed as
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where jλ  are the Fourier frequencies such that
2 /j j Tλ π= , 1,2, ,j n= …  and n T=

The GPH estimator is based on two hypotheses. 
These are
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negligible.

02 : H  The random variable 
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λ

λ
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asymptotically distributed and IID.
Under the above-mentioned hypotheses, the linear 

regression (equation no. 5) can be written as
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where, α  is the intercept term and defned as the 
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The parameter d  can be estimated by the ordinary 
least squares method by considering the above equation 

as a regression of ( )( )y jlog I λ on 24sin
2

jlog
λ  

  
  
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3.	 ARFIMA MODEL
ARIMA methodology is used for addressing the 

linear component of a short memory process. Here, it is 
assumed that a variable’s future realization is linearly 
dependent on both its previous lag-realizations and 
random errors. Generally, this is represented as ARIMA 
( ) , , p d q  where  p  is the order of autoregression,  d
indicates the order of integration (differencing) and q  
represents the order of moving average. For a univariate 
time series { }ty , the ARIMA process is represented as

( )( ) ( ) 1 d
t tL L y Lϕ θ ε− = � (7)

where, ty  is the actual observation and tε  is the 
error term observed at time t  such that 

( ) ( )2~ 0, .t IID Lε σ ϕ  and ( )Lθ  denote the polynomial 

of lag operator L  of order p  and q , respectively. In 
ARIMA methodology, the order of differencing d  is 
considered as an integer. ARFIMA model is used for a 
long memory process in the same line as the ARIMA 
model except with a fractional value of d  
(‌ 0.5 0.5d− < <  (Hosking, 1981)). Fractional 
differentiation is a general form of integer differentiation. 
The parameters can be estimated using the quasi-
maximum likelihood estimation technique (Tsai, 2006).

4.	 LRNN MODEL
Elman (1990) proposed the basic form of the LRNN. 

LRNNs are similar to feed-forward neural networks. 
Every layer in an LRNN has a recurrent connection and 
a tap delay associated with it. The concept of LRNN 
is similar to time delay and distributed delay neural 
networks (Liu et al., 2012).

Fig. 1. A two-layered LRNN architecture

In this article, a two-layered LRNN is employed. 
The schematic diagram of the LRNN model is given in 
Figure 1. The feedback layer, i.e., layer 1 provides 
recurrence. The feed-forward layer is layer 2 and this 
layer propagates the information in the forward 
direction. The 1b  and 2b  indicate the bias, the 1f  and 

2f  indicate the hidden layers, and the ( )1a t  and ( )2a t  
are the outputs of layer 1 and layer 2, respectively. The 
weights for the connections between the input layer to 
the hidden layer and between the hidden layer to the 
output layer are denoted by 1,1Lw  and 2,1Lw , 
respectively. The time delay is indicated by D. The 3b  
is the bias of the time delay later.

The Levenberg-Marquardt (LM) algorithm can be 
used to train the LRNN. This LM algorithm combines 
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the benefits of both the gradient descent and Gauss-
Newton methods. It acts like gradient descent for large 
errors and switching to Gauss-Newton for fine-tuning 
near the optimal point. The Hessian matrix can be 
calculated using a back-propagation (BP) algorithm. 
The parameters are updated by the search scheme 
(Levenberg, 1944):

[ ] ( )ˆλ =′ + ′ −J WJ I J W y yδ � (8)
where, J  is the Jacobian matrix of the errors, W  

is the weight matrix, λ  is a non-negative scalar known 
as damping parameter, I  is an identity matrix, δ  is the 
perturbation of the parameters at each iteration step, 

ˆ and y y  are the vectors of actual and predicted values. 
Later, Marquardt (1963) modified it by replacing I , 
with ( )diag ′J WJ  resulting in the Levenberg-
Marquardt algorithm:

( ) ( ) ˆdiagλ′ −′ +  =  ′J WJ J WJ J W y yδ � (9)
In two-layered LRNN, different activation functions 

are used in different situations. For hidden neurons, it 
uses sigmoid function. The sigmoid function is smooth 
and continuously differentiable, which is essential 
for gradient-based optimization algorithms like back 
propagation.

Sigmoid function:

( )( ) ( )
1

1
h

x tf x t
e−

=
+

� (10)

For time delay neurones, a time delay function 
is employed as an activation function and for output 
neurones, it is served by an identity function.

Time delay function:

( )( ) ( )1cf x t x t= − � (11)
Identity function:

( )( ) ( )of x t x t= � (12)
The error is calculated as the discrepancy between 

the LRNN’s output and the referenced output. This 
error is used to optimize the weights. The sum of the 
input weights 1,1Lw  and 2,1Lw  with the bias 1b  and 2b  
are calculated by:

( ) ( )1,1 1
1 , 1t f t bγ  = − + Lw  � (13)

( ) ( )2,1 2
2 , 1t f t bγ  = − + Lw  � (14)

The input to the output layer of layer 1 and layer 2 
can be respectively,

( ) ( )( ) ( )( )1 0
1 f t f x t tγ= � (15)

( ) ( )( ) ( )( )2 0
2 f t f x t tγ= � (16)

The input of the outputs to the hidden layer neurons 
is given by:

( ) ( ) ( ) ( )1,1 2,1
1 1f t x t f t f t bγ    =   + + +     W Lw Lw

( ) ( )( ) ( )( ) h
fh t f x t tγ= � (17)

where, ( )( )f tγ  is the aggregated input to the 
hidden layer neurons, 1W  represents the weight 
connecting the input layer and the hidden layer. 

( )1,1 f tLw  and ( )2,1 f tLw  represent the output weights 
of the feedback layer. Computations of the input to the 
context neuron of the context layer are:

( ) ( ) ( )2 3 3 c t h t y t bγ =   +   +   W W

( ) ( )( ) ( )( ) c
cc t f x t tγ= � (18)

where, ( )c tγ  is the aggregated input to the context 
layer neurons, 2W  is the weight connecting the hidden 
layer and context layer and 3b  is the bias applied to the 
context layer neurons. 3W  represents the context 
weights of the feedback layer.

5.	 THE HYBRID ARFIMA-LRNN MODEL
Merging a neural network model with a time series 

model can be used as a hybrid model to model the data 
more precisely. It can be represented as follows:

 t t tZ Y X= + � (19)
where, tY  and tX  are the linear and nonlinear 

components, respectively. The first step involves fitting 
of the ARFIMA model to the dataset. Then, the residuals 
are obtained and this residual series is used as the input 
to the LRNN model because it is assumed that only the 
nonlinear component exists in the residual series. For 
training the model, the least mean absolute error (MAE) 
principle is utilized. The forecast obtained from the 
LRNN is added with the forecast obtained from the 
ARFIMA model to get the final forecast.

Let { }te  is the residual series of the ARFIMA 

model, then ˆ
t t te Z Y= − , where, t̂Y  is the predicted 

value. With n  input nodes, the LRNN model for the 
residuals will be
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( )1 2, , ,t t t t n te f e e e ε− − −= … + � (20)
where, f  is a non-linear function considered by 

the LRNN method and ( )2~  0, t IID Nε σ  is the random 

error. If the predicted value from the LRNN is ˆ
tX , then 

the resultant prediction would be
ˆ ˆ ˆ

t t tZ Y X= + � (21)

6.	 EMPIRICAL ILLUSTRATION
To conduct the study, the daily wholesale prices 

of arhar for the Mumbai market between the time 
period of 1st August 2012 to 31st December 2020, 
are collected from the Ministry of Consumer Affairs, 
Food and Public Distribution, Government of India. 
The Table 1 represents the descriptive statistics of the 
price series and its plot is depicted in Figure  2. The 
analysis has been done using the ‘rugarch’ package of 
R programming language and the ‘layrecnet’ command 
of MATLAB programming language.

Fig. 2. Time plot of arhar price series

Table 1. Descriptive statistics

Statistics Price Series 

Mean (Rs./quintal) 7446.63

Median (Rs./quintal) 6750.00

Minimum (Rs./quintal) 4990.00

Maximum (Rs./quintal) 17500.00

S.D. (Rs./quintal) 2065.85

C. V. (%) 27.74

Skewness 1.26

Kurtosis 1.35

A prerequisite assumption for applying the ARMA 
methodology is the absence of unit root in the dataset, 
i.e., the data should be stationary. Two statistical tests 
namely, the Augmented Dickey-Fuller (ADF) test 
(Dickey and Fuller, 1979), and Phillips-Perron (PP) 
test (Phillips and Perron, 1988) are carried out for this 
purpose. The results of these tests are given in Table 2. 

For both tests, the null hypothesis is that a unit root is 
present in the underlying series. These tests confirm the 
presence of unit root in the price series. As the price 
series is not stationary, the difference series is obtained. 
The absence of a unit root in the difference series is 
confirmed by both tests. Hence, the further steps are 
carried out using the difference series.

Table 2. Test for stationarity

Test Price Series Difference Series

Test statistic p-value Test statistic p-value

ADF -1.95 0.60 -13.80 0.01

PP -1.79 0.67 -52.58 0.01

The Shapiro-Wilk test (Shapiro and Wilk, 1965) 
has been carried out to check the normality of the price 
series and the differenced series. The null hypothesis 
for this test is that the series is normally distributed. 
It is seen that both series do not follow normality 
(Table 3). Figure 3 depicts the kernel density plot of the 
difference series. The non-normality of the difference 
series is also supported by the kernel density plot. In 
the absence of normal distribution for both the series, 
it is considered that they are following the generalized 
error distribution (GED) as a heavy-tailed alternative 
one.

Table 3. Test for normality (Shapiro-Wilk test)

Price Series Difference Series

Test statistic 0.879 0.299

p-value <0.001 <0.001

Fig. 3. Kernel density plot of the difference series

The statistical dependency among the realizations 
of the price series and the difference series are 
investigated with the help of the ACF and partial ACF 
plots (Figure 4). From the ACF, it is found that statistical 
dependency is present among the successive 
observations. It is also seen that the autocorrelations 
over the lag are decreasing at a hyperbolic rate which 
confirms the presence of long memory. This inference 
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is confirmed by the GPH test (Table 4). For this test, the 
null hypothesis is defined as 0d =  against the 
alternative 0d ≠ . The existence of long memory is 
confirmed for the difference series as well as for the 
original price series by this test.

Fig. 4. ACF and PACF plots

Table 4. Test for long memory (GPH test)

Price Series Difference Series

d 1.02 0.201

S.D. 0.04 0.097

In the next step, the whole difference series is 
grouped into two parts, a) model initialization set, 

which is used to train the model and b) holdout set, 
which is used to test the forecasting performance. 
The data set is comprised of 3075 data points, hence, 
the last three hundred data points are used as the 
holdout set and the remaining previous realizations 
as the model initialization set. ARMA models of 
different order are fitted to the model initialization 
set. The Akaike information criterion (AIC), Bayesian 
information criterion (BIC), and Hannan-Quinn 
information criterion (HQC) are used to select the best-
fitted ARMA order. The best-fitted ARFIMA model is 
obtained as ARFIMA (2, d, 2) and the parameters of the 
fitted model are given in Table 5. It has been seen that 
all the parameters of the ARFIMA model are highly 
significant.
Table 5. The estimated parameters of the fitted ARFIMA (2, d, 2) 

model

Parameters Estimate

µ -0.637***

1ϕ -0.047***

2ϕ 0.266***

1θ 0.037***

2θ -0.274***

d 0.011***

ν 0.171***

 ***p<0.01

The fitted values are obtained to examine the degree 
of the model fitting. The in-sample forecast is done 
using this model for the holdout set. This is considered 
the performance of the standalone ARFIMA model. 
As ARFIMA is a linear model, it is assumed that the 
non‑linear component is present in the residual series. 
The nonlinearity of the residual series is verified using 
the BDS test (Broock et  al., 1996). According to the 
test’s null hypothesis, the underlying series is linear. 
The test comes out to be significant and it is considered 
that the residual series is nonlinear.

The residual series is considered as the input to 
the LRNN for the hybrid ARFIMA-LRNN model. 
The fitted values and the in-sample forecasted values 
are obtained from the neural network. These fitted and 
forecasted values are clubbed with their counterparts 
obtained from the standalone ARFIMA model to get 
the corresponding output for the hybrid model. Another 
standalone LRNN method is applied to the difference 
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series itself. The fitted and in-sample forecasted values 
are also obtained for the standalone LRNN method. To 
train the neural network for both scenarios the number 
of hidden nodes for layer 1 is considered as 50 and for 
layer 2 it is 1. Different activation function is used for 
different types of neurons. For hidden, time delay, and 
output neurons, the activation functions are sigmoid, 
time delay, and identity functions, respectively.

The fitting performance is evaluated based on 
minimum values of Root Mean Squared Error (RMSE), 
Root Mean Squared Log Error (RMSLE), and Mean 
Absolute Error (MAE) in the model building set (Table 
6). For a series of actual observation { }ty  and the 
corresponding predicted series { }ˆ ,ty  these three 
evaluation criteria are calculated as

( )
1

2
2

1

1 ˆ
h

t t
t

RMSE y y
h =

 
= − 
 
∑ � (22)

( ) ( )
1

22

1

ˆ1 1 1
h

t t
t

RMSLE ln y ln y
h =

 
=  + − +   
 
∑ � (23)

1

1 ˆ
h

t t
t

MAE y y
h =

= −∑ � (24)

Table 6. Observed vs. fitted performance of fitted models

Model RMSE RMSLE MAE

ARFIMA (2, d, 2) 117.91 0.014179 33.40

LRNN 118.01 0.014187 35.70

ARFIMA(2, d, 2)-LRNN 116.81 0.014128 28.41

It is seen that the hybrid ARFIMA (2, d, 2)-
LRNN model is the best performer by all the criteria, 
followed by the standalone ARFIMA (2, d, 2) model 
and standalone LRNN method. The in-sample 
forecasting performance of standalone ARFIMA (2, 
d, 2), standalone LRNN, and hybrid ARFIMA (2, 
d, 2)-LRNN models are evaluated using the above-
mentioned error functions for six moving windows of 
50, 100, 150, 200, 250, and 300 days (Table 7).

From Table 7, it can also be observed that the 
hybrid model is the best-performed model in the model 
validation set, irrespective of the horizon length of 
forecasting, followed by the standalone ARFIMA and 
LRNN methods. Again, the effect of the long memory 
property of the data series plays a noticeable role in 
the in-sample forecasting performance. It has been 
seen that the forecasting performance is improved 
when the horizon is increased up to 200 days, after 

that performance decreases. The short-term forecasting 
horizons, such as 50 days and 100 days, are worse 
performers than the long-term forecasting horizon. 
The extent of the fitting is also visualized for the best-
fitted hybrid ARFIMA-LRNN method in Figure 5. The 
weekly comparison of actual and forecasted values 
for the first 12 weeks of the holdout set is given in 
Table 8. For the weekly forecast also, the same order of 
performance can be seen.
Table 8. Weekly actual and forecasted values for different models

Weeks Actual series 
(Rs./quintal)

ARFIMA(2, d, 
2)-LRNN

(Rs./quintal)

ARFIMA(2, 
d, 2)

(Rs./quintal)

LRNN
(Rs./

quintal)

1 8500.00 8500.55 8505.62 8528.84

2 8500.00 8500.54 8505.35 8526.05

3 8500.00 8499.53 8505.08 8523.43

4 8514.29 8507.94 8496.26 8492.41

5 9371.43 9275.65 9261.74 9256.83

6 9600.00 9599.50 9604.38 9616.55

7 9600.00 9600.49 9604.17 9614.57

8 9600.00 9600.48 9603.97 9612.74

9 9600.00 9600.46 9603.79 9611.06

10 9600.00 9600.42 9603.61 9609.52

11 9600.00 9600.39 9603.45 9608.12

12 9485.71 9556.62 9560.44 9563.99

Table 7. The forecasting performance of the fitted models in 
different moving horizons

Days Model RMSE RMSLE MAE

50 ARFIMA (2, d, 2) 135.46 0.015126 34.46

LRNN 136.01 0.015212 49.56

ARFIMA(2, d, 2)-LRNN 135.11 0.015049 30.47

100 ARFIMA (2, d, 2) 103.22 0.011443 31.46

LRNN 103.49 0.011474 34.84

ARFIMA(2, d, 2)-LRNN 103.08 0.011425 24.95

150 ARFIMA (2, d, 2) 89.44 0.009955 20.81

LRNN 89.63 0.009987 27.15

ARFIMA(2, d, 2)-LRNN 89.38 0.009945 17.82

200 ARFIMA (2, d, 2) 79.07 0.008813 17.99

LRNN 79.87 0.008887 21.94

ARFIMA(2, d, 2)-LRNN 78.97 0.008801 14.59

250 ARFIMA (2, d, 2) 84.41 0.009346 18.71

LRNN 84.57 0.009387 21.48

ARFIMA(2, d, 2)-LRNN 84.24 0.009325 15.03

300 ARFIMA (2, d, 2) 88.23 0.009725 18.51

LRNN 88.25 0.009727 21.91

ARFIMA(2, d, 2)-LRNN 88.18 0.009720 16.67



228 Debopam Rakshit and Ranjit Kumar Paul / Journal of the Indian Society of Agricultural Statistics 78(3) 2024  221–229

7.	 CONCLUSION
In this article, the predictive efficacy of the hybrid 

ARFIMA (2, d, 2)-LRNN model is evaluated. The 
performance of this hybrid model is also compared 
with the performance of the standalone ARFIMA 
(2, d, 2) and standalone LRNN method. The wholesale 
price data of arhar of the Mumbai market is used for 
empirical illustration. It has been seen that the hybrid 
ARFIMA (2, d, 2)-LRNN model outperformed as 
compared to these standalone methods in the model 
building set. Moving window forecast is done for 50, 
100, 150, 200, 250, 300 days horizons. The hybrid 
model again outperformed the standalone models for 
all the forecasting horizons. The long memory property 
played a significant role in forecasting. Forecasting 
performance improved when the forecasting horizon 
was increased up to 200 days and then declined. As a 
further improvement, the hybrid model using LRNN 
with a greater number of layers can be evaluated.
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