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INTRODUCTION

Experimentation - in a broad sense - has been an
age-old exercise by seekers of TRUTH. Simple and
improvised experiments have led to wonderful
innovations, though sophisticated and complicated
experiments have become bad necessities in some
recent contexts. While a wide array of experiments has
existed over time, planning experiments to yield results
that would provide a basis for inductive inferences,
started in the context of Agriculture only in the early
twentieth century. Since then, planning an experiment
and analyzing the experimental results has become the
key element in any scientific or technological
investigation to-day.

Developments in Design and Analysis of
Experiments were taking into account diverse problems
encountered by experimenters even before the
experiment could be designed. Such problems arose in
identifying the appropriate factors and their levels along
with constraints on these, in taking note of possible
incompatibilities among levels of different factors and
of prior information about the relative importance of a
factor and its relation with other factors. Further,
problems in identifying and subsequently quantifying
the response variable(s) posed some problems.
Theoretical developments were obviously based on
certain assumptions that could not be always validated.

In a large variety of situations, the investigator is
interested in the behaviour of more than one responses,
which may be inter-related to varying extents, expressed
in different units of measurement, and have different

influences on the conclusions regarding the
phenomenon or process under study. Multi-response
experiments have attracted the attention of many
research workers and remains a field with many more
novel ideas to emerge.

The present article is essentially a review of some
approaches to analysis of multi-response experiments
that goes beyond the conventional approaches and
recognizes sampling fluctuations in the response
functions and offers a new formulation of the problem
in terms of stochastic programming. It also portrays
some typical problems with the design aspects as also
with the responses, without — of course — suggesting
any solutions. All these problems may arise in
agricultural as well as industrial experiments.

THE PANORAMA OF EXPERIMENTS

An experiment, generically, means an exercise to
gather (generate or compile) empirical evidences (not
based on theory) and acquire knowledge relating to a
phenomenon (occurring in Nature or Society or
Economy) or a system or an operation. Experiments
range from simple and quick observations, through
design, development and administration of a test or a
treatment, to complicated and even hazardous ventures
into unknown tracts and entities. Simple laboratory
experiments to identify and estimate properties of
substances, bioassays to determine relative potency of
a new biological preparation compared to a standard
one, agricultural field trials with different manures or
varieties or irrigation practices, clinical trials with
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different drugs or treatment protocols, complicated and
costly experiments in space research, etc. illustrate the
panorama of experiments.

It is useful to distinguish between two types of
experiments viz. absolute and comparative. An example
of the first type could be an experiment to determine
the electric charges of an electron or to find the mean
root-length of a plant species treated with a specified
level of an antibiotic compound or to find out if a given
dose of a certain biological preparation does produce
muscular contraction when applied to a mouse. It is for
such experiments that the theory of errors was originally
devised. Repeated outcomes of such an experiment do
not agree exactly with one another and the problems
considered were to obtain best estimates and associated
measures of reliability from sets of outcomes.

On the other hand, in a comparative experiment
two or more experimental conditions are compared with
respect to their effects on a chosen characteristic of the
population under study. Suppose, for example, a
metallurgical engineer is interested in studying the
effects of two different hardening processes, oil
quenching and saltwater quenching, on some alloy steel.
The engineer subjects a number of alloy specimens to
each quenching medium and measures the hardness of
each specimen after quenching.

It should be pointed out that an experiment, where
only one factor or causal entity is considered at different
levels and the corresponding effects are noted with the
object of determining the relation between levels of the
causal entity and the responses, involves comparison
across levels, but can also be regarded as absolute or
better exploratory.

Continuing with comparative experiments, one can
proceed to have several conditions tried out to find
which experimental condition is the best. Alternatively,
one can try to find out which level or dose of only one
preparation will yield the best result in terms of some
physiological parameter or some change therein. These
are sometimes branded as optimization experiments or
response surface experiments.

THE “RESPONSE” PARADIGM

The properties or features or changes in such
properties or features which follow the application of

a treatment or treatment combination on each
experimental unit which are ultimately analyzed to meet
the objective(s) of the experiment and which are
expected to vary from one unit to another are
recognized as response variables. Most experiments
involve only one response variable.

Responses of different units may be just
observable (attribute) or countable (discrete variable)
or measurable (continuous variable that appears to be
discrete when recorded). Data arising from the
experiment are accordingly recognized as categorical
or discrete or continuous. In some cases of agricultural
or biological experiments, the response could be quantal
(all or nothing) or binary. We require different types and
methods of analysis in these three different situations.

It may be important in some situations to
distinguish between the ‘yield’ or ‘response’ that can
be noted in respect of the experimental units and the
variable of interest. This may happen if the variable of
interest is difficult or time-consuming to note just at the
end of an experiment and we tend to note some other
variable as a proxy for the basic variable of interest or
a variable that is related to the basic variable. The
analysis of experimental data has to recognize three
different situations viz.

(1) the variable of interest can be directly noted and
is the same as the ‘yield’ or ‘response’,

(2) the variable of interest is not directly noted and
is obtained through a transform (not necessarily
monotonic) of the ‘yield” or ‘response’ variable
that is noted. For example, the variable of interest
is reliability or survival probability but what is
directly noted for each experimental unit is just
time-to-failure or length of life. A second example
could be the dry weight of a crop standing and
harvested from a plot and this weight is a
transform of the weight of the harvested produce,

(3) the response variable is the variable of interest but
cannot be directly obtained, rather it is estimated
from some data X which depend on the factor
levels as also from data Y derived from some other
source. Thus the yield of a crop is not directly
noted in respect of some plots and is sometimes
estimated from Remote Sensing data or from
relations connecting crop yield with agro-climatic
and agronomic variables.
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In the last two situations, the analysis of data
should take into account the nature of the transform and
the relation connecting the variable of interest with the
variables which have been noted.

All this relates to the case of a single variable of
interest. Complications arise in dealing with more than
one variables of interest.

THE FACTOR SPACE

The design of an experiment is essentially a plan
to conduct the experiment so that valid and relevant
conclusions can be reached efficiently and
economically. Such a plan is in terms of decisions
related to the choice of experimental units, the choice
of factor levels or factor level combinations (treatments)
and their associations with different experimental units
(or different runs of the experiment, as the case may
be) along with the measurements or other records to be
kept for each experimental unit.

A good design should incorporate all prior
information about the factors, factor levels, possible
inter-relations among factors and should require only
a few factor level (treatment) combinations to be tried
out in an experiment (or an experimental run) as also
only a few runs to reach the optimum level
combinations.

In the traditional factorial experiments, all levels
of a given factor are assumed to be compatible with
each level of any other factor, so that the number of
treatment combinations which can be accommodated in
the framework of an experiment is simply the product
of the numbers of levels of all the factors (which may
or may not be the same for each factor). Of course, in
some experiments some of these treatment
combinations may not be included in each replicate or
even not included at all, because of resource constraints
or because of prior information justifying their
exclusion for the purposes to be served by the
experiment. It is also possible that although all or most
of the treatment combinations were included in the
design, response(s) could be missing for some of the
experimental units. We can even think of situations
where responses to one or more treatment combinations
were completely missing. We have tools to estimate the
missing response values and proceed with the analysis.

However, in practice, it is quite possible that some
levels of certain factors cannot be combined with some
levels of some other factors because of adverse or
otherwise inadmissible joint effects on the experimental
units, so that we have to think of designs which are
structurally different from usual factorial experiments.
Let us consider some simple examples of such a
situation.

Let us take a 2 x 2 experiment where, suppose, the
higher level of 4 cannot go with the lower level of B,
so that we are left with only 3 treatment combinations
e.g. (1) b and ab with the result that the 2 degrees of
freedom associated with the treatment combinations can
be used to estimate somehow effects 4 and B only in
terms of simple effects viz. (ab)-(b) and (b)-(1)
respectively. Going to the 2 X 2 X 2 experiment there
will be, depending on which treatment combinations are
not compatible, problems in estimating some main
effects and some interactions. At least, the second order
interaction will not have the usual interpretation in
terms of the difference between a first order interaction
corresponding to the higher and that corresponding to
the lower levels of the third factor. One can only expect
more complications with general factorial experiments.

Mixture experiments are quite relevant in many
industrial and agricultural situations. In most such
experiments, the factors correspond to levels of some
constituents in a combination that produces a single
response (or several responses). If x; denotes the level
of constituent 7 (as a fraction of the over-all content of
the mixture) with x; > 0 and Zx; = 1, constraints that
are known to be taken care of are like x; < (>) 4;.
However, several real-life situations require constraints
like x; > () x; to be satisfied. These await proper
accommodation within the current framework of
mixture experiments.

MULTI-RESPONSE EXPERIMENTS

An industrial engineer may want to study the
influence of cutting speed and depth of cut on the life
of a tool and the rate at which it loses metal. A food
technologist may be interested in determining optimum
combinations of the various ingredients of a product on
the basis of acceptability, nutritional value, economics,
and other considerations. A medical researcher studying
the effects of complexing agents on the yield of a
certain antibiotic may also be interested in the product



24 S.P. Mukherjee / Journal of the Indian Society of Agricultural Statistics 65(1) 2011 21-26

cost. Hill and Hunter (1966) cite several papers in
which multiple responses are investigated.

Multi-response experiments are also quite relevant
in the context of Agriculture. Materials about several
such experiments were communicated to this author by
V.K. Gupta (2010). These are briefly indicated in what
follows.

An experiment was conducted during 2004-05 at
Department of Agronomy, BCKV on integrated nutrient
management on Rapeseed. Three different sources of
sulphur were tested along with recommended dose of
Nitrogen (N), Phosphorous (P) and Potassium (K) and
Farmyard Manure (FYM). The experiment was laid out
in a Randomized complete block (RCB) design in 3
replications. Data on the following response variables
were collected :

I. Number of branches per plant (P1);

II. Number of siliqua per plant (P2);

II. Number of seed per siliqua (P3);

IV. Seed yield (g/plant) (P4);

V. Straw yield (g) (P5);

VI. HI (Havest Index) (P6);
VIIL. Test weight (P7);
VIII. Leaf area Index 45 days after sowing P(8);
IX. Leaf Area Index 90 days after sowing P(9).

An experiment was conducted on osmotic
dehydration of banana to determine optimum
combination of power levels, temperature and air
velocity at Division of Agricultural Engineering, IARI,
New Delhi. The data were collected on energy use
efficiency (%) [Y ], rehydration ratio [Y5], total soluble
solids (TSS) [Y3], total sugars [Yy4] and total
carbohydrates (mg/g dry matter) [Y5]. The experimenter
is interested in obtaining the optimum combination of
the controllable factors that maximizes all the response
variables simultaneously.

In case of complete multi-response situation,
parameter estimation is not a problem at all. However,
in case of incomplete multi-response experiments, the
problem of parameter estimation and then obtaining the
point of optimum response vector arises.

The response variables should not be investigated
individually and independently of one another.

Interrelationships that may exist among the responses
can render such univariate investigation meaningless.

The goal of multi-response experiments is to find
the setting of the design variables that achieve an
optimal compromise of the response variables. By
optimal compromise we mean finding the operating
level of the design variables such that each response
characteristic is as “close” as possible to its ideal value.

The multiresponse optimization technique initially
proposed by Harrington (1965) and later modified by
Derringer and Suich (1980) finds an optimal
compromise of product characteristics using a distance
metric called the desirability function. Values of
desirability range from 0 to 1, with a number closer to
1 being more desirable.

Estimates of each response mean at treatment x are
I?i(x) . These estimates are transformed into a
desirability value d(x) using a transformation function.
There are two types of transformation function. The
first is used when the optimal value of a response is a
target value. The second type of transformation is used
for a response value that is to be maximized or
minimized. This method is attractive because it is
intuitive and simple. The inputs are the mean response
estimates, ﬁ-(x) , the target values, 77, and the upper
and lower acceptability bounds, ub; and [b;,
respectively.

Pignatiello (1993), as extension of Taguchi’s
(1989) single-response loss function, presents a
multirespone technique based on the criteria of
minimizing deviation from taget and maximizing
robustness to noise. If the product characteristics
deviate from the target values a weighted penalty or loss

is incurred. The distance metric denoted by ﬁp (x)

consists of two components, a deviation-from-target
component and a variance component.

An advantage of this method is the addition of a
variance component into the distance metric because we
would like to avoid those operating conditions that
introduce variability into the process. A disadvantage
is that we can not specify an acceptability region for
the responses, as well, the distance metric is intended
for product characteristics that have a specific target
value, and therefore its appropriateness for
characteristics to be minimized (maximized) is
questionable.
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A multiresponse technique similar to the previous
approach, which was developed by Ribeio and Elsayed
(1995), adds a third component to 5p (x), namely a
term associated with fluctuations in the design
variables. We call the distance metric ﬁREo (x) . Here,
the design variables are random variables. The
information captured by the third term of Eq. (D1) is
an estimate of the variability induced on the response
variables due to the fluctuations of the design variables.
The third term will place an additional penalty on those
operating conditions (i.e., settings of the X’s) in which
design-variable variation has an effect on the product
characteristics. When optimizing this distance metric,
the analyst is led away from those operating conditions
where the X’s cannot be set accurately.

A scenario in which this method might be useful
is the case in which an experiment is conducted in a
laboratory or pilot plant and the results are to be applied
to a full-scale production system. Control variables that
exhibit small fluctuations in the pilot system will often
be inflated in full-scale production. If the optimization
is performed on the pilot plant, the optimal obtained
may not be the best choice for the full-scale system.
Using this distance metric, if the design variable
fluctuations in full-scale production were known (from
control charts, for example), the analyst could
incorporate this into the optimization analysis.

The last multiresponse technique investigated is a
method proposed by Khuri and Conlon (1981), whose
distance metric is Dgc(x). This distance metric uses the
squared deviations of the product characteristics from
their targets, but then normalizes these deviations by
the variance of prediction of the response variables.

Khuri and Conlon propose a method for
determining the tagets 7;’s. For response variables
where smaller-is-best (bigger-is-best), 7; is set equal to
the minimum (maximum) of Yl over the region of the
experiment. [For example, consider the case of one
design variable 0 < X < 1 and one response variable
where smaller-is-best. If ¥ (x) =2 + 3X, then 7is set
equal to 2.]

DUAL RESPONSE SYSTEM

Myers and Carter proposed an approach associated
with the exploration of two response functions — one
recognized as primary and the other as secondary. Their

objective was to find the operating settings which
optimize a primary response Y » subject to the condition
that a secondary response I?s takes on a desirable value,
usually called a “target value” (denoted by T). Both Y f

and I?s are assumed to be second-order polynomial
regression functions. Thus, the problem considered is
the non-convex quadratic programme

Min. ¥, (X) = b, + X'b + X'Bx
st. Y () =c,+Xc+XCx=T
Xx’x < pz,

where };p is the primary response, I?s is the fitted
secondary response, 7 is the target value I?s , and Xx'=
(x1, x2, ..., xp) is the vector of control factors, B, » and
b, contain the estimated regression coefficients for Y,.
similarly, C, ¢ and ¢, contain the estimated regression
coefficients for I?s . That is

[ b b2 by /2]
B = : by .. by /2
b /2 o b |
[ ¢y /2 e !2
C = : )y . Cpl2
(/2 o o k|
B' = [b1, by, . .., bil; ol = [c1, €25 - - -5 Cl-

Here, the search for optimal operating settings is
confined to a ball of radius p.

It is assumed that all factors are scaled such that
the designed expiment is centered at X = 0.

STOCHASTIC PROGRAMMING
FORMULATIONS

However, the resulting solution is only a point
estimate for the location of the global optimum and this
neglects the sampling variability and bias of the fitted
responses.

To address the inherent sampling error in DRS, a
so-called “optimal region” where global optimum of the
true system resides with a certain probability has been
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considered by some authors. Herein, a Monte Carlo
simulation study of DRS is performed; then for each
simulated dual system of responses an algorithm is
applied to compute the global optimal settings.

The issue of random (sampling) variations in the
estimated responses can be taken care of in a stochastic
programming formulation of the problem. This requires
derivation of the somewhat complicated univariate
normal distribution of each response using the result

I§’l~ ~N(5, (XTX)fl O'ii) fori=p,s.

Here again we may have several alternative
formulations by considering

(a) E( Y ) for maximization w.r.t. X

(b) Var( Y ») for minimization

(c) CV( Y ») to be minimized

(d) Pr{ Y p >,} fora given y  to be maximized
(e) ¥, = G_l(al) for a given « to be maximized

where G(¢) = Pr{ Y » <t} is the distribution function of
Yp; all these may be subject of Pr{ ?p > Vo) =B B
being a pre-assigned large value.

These are difficult chance-constrained
programming problems, not yet fully explored and
await any practical applications. While E(Y)), V(Y))

and CV( fp) may not be that difficult to obtain, the
derivation of G(#) will be quite complicated. Even
assuming a normal distribution for Y, . the second
formulation gets translated into a quadratic
programming problem while the remaining three
formulations call for solving fractional programming
problems.

In situations where both the responses are of equal
importance and the experimenter tries to achieve some
target for each, one can formulate a goal programming
problem. Even differences in importance can be
accommodated in terms of weights while considering
the weighted total of deviations in the estimated
responses from the targets as the objective function. Not
much is yet known about stochastic goal programming
if we try to accommodate constraints like Pr{ Y = Vpo)
> fand Pr{y, > s} > v, Band v being pre-assigned
large values and we may have to take recourse to
simulation for a search of the optimal solution X.

The goal-programming approach, even without
chance constraints, can be extended to the case of any
number of (estimated) responses. Of course, fixing
targets for the different responses and associating
appropriate priorities or weights can pose complex
problems of choice.
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