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SUMMARY

In this paper we study some models for accelerated failure times based on the gamma distribution. These models are
useful as alternatives to analyses using lognormal or inverse Gaussian distributions that are common in literature [see
Bhattacharyya and Fries (1982b), In, Survival Analysis, J. Crowly and R.A. Johnson (eds.), IMS lecture notes-monograph :
series-2, Institute of Mathematical Statistics, Hayward, California, 101-118]. We have investigated maximum likelihood method
using four possible choices of the parameters of the gamma distribution that provides a reciprocal linear relation for the mean
failure time as a function of the ‘stress level’. The models are illustrated using the standard example from Nelson (1981),
[Applied Life Data Analysis, Wiley, New York] on failure times of motorettes under high temperatures.
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1. INTRODUCTION

“Accelerated life test” applies to the type of study
where failure times can be accelerated by applying
higher “stress” to the component, where higher “stress”
may bring quicker failure of the component. For
example, some components may fail quicker at higher
temperatures, however, it may take a long time before
failure occurs at lower temperatures. The factor that
may accelerate failure is generally called “stress”
factor, such as the temperature in the example just
mentioned above. The need for accelerated life test in
practice arises where the objective is to study the
relation between failure and stress conditions and low
stress conditions are costlier to study as they may
require a long time before failure occurs. And therefore
it becomes hard to ascertain the reliability of the
component quickly. In contrast, accelerated life testing
provides economic collection of data in order to be able
to estimate the reliability that can then be projected at
the lower stress levels.
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Accelerated life testing methods are useful for
obtaining information on the life of products or
materials over a range of conditions involving different
stress factors which are encountered in practice. Typical
type of stress factors that are encountered in
engineering applications include temperature, voltage,
pressure, vibration, cyclic rate, load etc. or some
combination of them. In other fields of application,
similar problems may arise where the relationship
between life and concomitant variables is of the nature
described above. The approach considered here can also
be applied in an agricultural research setup where
screening of genotype for resistance to certain diseases
is of interest. In such experiments the time that it takes
for the plants of a genotype to survive may be
interpreted as the failure time and this could be a
function of the level of disease that may represent the
stress level. For example, in screening lentil genotypes
for resistance to fusarium wilt, a number of genotypes
are grown in field plots infested with fusarium wilt (see
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Bayya et al. 1997) and the plants are observed over time
for resistance to the infestation.

Accelerated life tests serve various other purposes
such as identifying design failures, estimating the
reliability improvement by eliminating certain failure
patterns, determining burn in time and conditions,
quality control, determining whether to release a design
to manufacturing or product to a customer,
demonstrating product reliability for customer
specifications, determining the consistency of the
engineering relationship and adequacy of statistical
models, developing relationship between reliability and
operating conditions and so on. Actually management
must specify accurate estimates for their design
purposes and statistical test planning helps towards this
goal. Without a good experimental design, analysis and
interpretations of data may not be adequate and thus
may result in improper decision.

The analysis of accelerated life testing models
based on the log-normal models has been thoroughly
developed in a series of papers by Nelson (1971, 1972a,
1972b, 1972c¢), finally culminating into an excellent text
book (see Nelson 1990). Singpurwalla (1972) also
discusses inference procedures based on these models.
Bhattacharya and Fries (1982a) propagated inverse
Gaussian distribution as an alternative to Birnbaum-
Saunders model for fatigue life distribution and later
explored its use as an accelerated life test model (see
Bhattacharya and Fries (1982b)) and model checking
procedures (Bhattacharyya and Fries (1986)).

The models considered in Nelson (1990) assume
that the logarithm of failure time follows a linear
regression as a function of inverse of the stress. This
assumption has been questioned by several authors. For
example, Bhattacharyya and Fries (1982b) argue that
it makes more sense to assume the reciprocal of failure
times to follow a linear regression in the stress
variable(s). His model is based on failure times
distributed as inverse Gaussian. Our aim is to study
such models with life times following gamma
distribution. Several such models are described in the
next section. The basic goal is to choose the parameters
of the gamma distribution so as to ascertain an inverse
relation between the mean failure time and the stress
level. The next section (Section 3) outlines maximum
likelihood procedure for estimation of the parameters.
And Section 4 discusses the application of these models
for a standard data set analyzed by several authors. We

find that one of the models is a strong competitor to
the log-normal and inverse Gaussian regression models
used earlier.

2. THE RECIPROCAL LINEAR REGRESSION
MODEL

In stochastic modeling of failure time, the fatigue
life time distribution leads a prominent role in the
engineering literature. Bhattacharyya and Fries (1982a)
assumed that the fatigue is governed by a Wiener
process, and the time to failure is interpreted as a first
passage time distribution, hence may be assumed to
follow an inverse Gaussian (IG) distribution. Let Y
denote the failure times then denoting the mean failure
time at stress level x by x4, = E(Y| X = x) we may
postulate the reciprocal linear model as

1 =6+ 6x; 8>0,620,x>0, 2.1)

i.e. the conditional distribution of Y| X = x is considered
to be IG(u,, 1), where A is the dispersion parameter.

Since, the fatigue life distribution may not follow
a Wiener process, IG distribution may not always be
appropriate. Hence, we would like to consider some
other general family of distributions in accelerated life
testing. Due to proximity of the gamma distribution to
the log-normal and inverse Gaussian family, we are
inclined to use the gamma distribution as the model for
failure times, i.e. the failure times at stress level x may
be assumed to follow Gamma(¢,, A3,) distribution where
the density of a Gamma(e, f) distribution is given by

F) = 2L exp(—/B), y>0; =1, B> 0

2.2)
The models that we propose below assume the
dependence of the parameters & and £ on x.

—y
BT ()

In a practical situation, we only consider d, + ;x
> 0 on a finite interval of x which corresponds to the
range of stress x. But we assume that the origin is taken
at the lower point of this interval, i.e. §, = 0. Different
choice of ¢, and S, will generate different models that
may be motivated from the following considerations.
A constant S, implies that the distribution shape may
change with respect to x but not the scale, where as, a
constant ¢, implies that the distribution changes with
x according to the changes in scale. Moreover, since,
M, = a, B, and, since the mean failure time at level x is
considered to be a decreasing function of x, a general
model for ¢, may be given by 1/u, = g(e,f3,), where g
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is an increasing function, this may be achieved by
assuming ¢, to be decreasing in x for fixed £, and/or
B, to be decreasing in x for fixed ¢.. Obviously, we may
assume the dependence of both the parameters on x,
however, here we will assume this for only one of the
parameters. In addition to providing a simple model this
assumption has the potential to specify a reciprocal
linear model as given in the following choices

Model I  : o, =1/(o+ ayx) and B, = B
Model I : B, =1/, + Bix) and o, =
Model Il : o, = (0 + 04 /x)and .= f3
Model IV : B.=(f + B /x)and o, = &

The next section discusses the maximum
likelihood estimation of the parameters.

3. MAXIMUM LIKELIHOOD ESTIMATION OF
THE PARAMETERS

In order to obtain estimates of the parameters,
consider the observations (x;, y,); i =1, 2, ..., n from n
runs of an accelerated life test experiment where
¥; denote the failure time corresponding to the stress
setting x,. Here the random variables y;, y,, ..., ¥,
are considered to be independent and that y, ~

Gamma( &, , ﬁxi ).

The general form of the log-likelihood function is
given by

n
log L=~ |21 +(a, —1)log y,
gi [ﬂx,. K 3.1

—logl'er, -, log ﬁx,.:|

This simplifies to different forms for the models
mentioned earlier and these will be discussed below.
An important case is when the shape parameters &,
are not constant with respect to x;. In this case we use
the following Euler’s infinite product representation of
the gamma function

1 = )
I 44 1+_ n ,—ooS < o0 32
L, H[( H e G2

n=1 n

where ¥ is known as Euler’s constant defined as

m-—»oo m

= lim 1+l+l+l+ +i—lo m
4 2 3 4 7 s

=0.5772156649.

Taking the logarithm and term by term
differentiation gives

— 1
aonn+z)

4 logT'(z) =¥Y()=-y- l+ Z (3.3)
dz Z

that is useful for computations.

3.1 Model I

In this case we let ,Bxi = fand then the parameters
o, o and B are related to the parameters ¢, and 0, of
the reciprocal linear model by

&' = B(S,+ Sx). (3.4)

or
0y = B, oy = B3 (3.5)

We basically need to estimate three parameters ¢,

o, and fand the corresponding log-likelihood becomes

n

log L=-3 [%+ (D log y,

i=1 (3.6)

—log I'(er, ) — &, log ﬁ]
where @, = /(0 + x;). So the maximum likelihood

estimators of ¢, ¢; and £ can be obtained by solving
the following estimating equations

ﬂ = ; (3‘9)

2%

Substituting the value of S obtained above in
equations (3.7) and (3.8), we have two equations in two
unknowns that can be solved by numerical methods. We
have found Newton-Raphson method useful that
converges quickly.
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3.2 Model II

For the second model we assume that &, = o. The
relation between the parameters &, £, and S, and &,
0, are given by

B =a(&+ &),
ie.
By = ady, py = ad,. (3.10)

The maximum likelihood equations in this case are
given by

Y y+ay pl=o, (3.11)
ity uf = 0; (3.12)

Ylogy, + Ylogh, =nlog¥(@ (3.13)
Eliminating & from these equations gives

Zyizxiﬁ;,l = ZyixiZﬁA;il ,

and

zyi _ 1 A
b 4 ZB;I - (ZIOg v + ZIOg B, ) (3.15)
These two equations can be iteratively solved for

Bo and ﬁl However, direct numerical solutions were
found to be equally convenient.

(3.14)

3.3 Model III

In this model the scale parameter is again constant
as in model I, but &, is given by

* *
where 7, = 1/x,. Relationship of the parameters of the
gamma model to the reciprocal linear model can not be

% k
explicitly written. All we can say is that, &, & and
[ are such that

(% + 0 Ix)B=1/(8+ Sx)i=1,2, .. n.

For maximum likelihood estimation of ¢, ¢; and
B, similar computations as for Model 1 provide the
solution of § in terms of a, as

. 2?:1371'

B == (3.16)

i

and the maximum likelihood equations for &, and @
are given by

logy; —nlog B = 3 W& +6in):

Silogy—log B35 = Y@ +Gn). (3.18)

Substituting the value of B from (3.16), the above

equations reduce to two unknowns @&, and & that can
be iteratively solved. We have used Newton-Raphson
method along with the formulae for ¥ function in
computations that seems quite efficient.

(3.17)

3.4 Model IV

For this model, &, is assumed constant denoted
by czand we can write B, = B + B;7. As in model

111, we have the following relation to the reciprocal
linear model

a(By+ Br) =108+ 6x).

No further simplification seems possible. For the
maximum likelihood solution we have as for model 11

YubBli-aYy. B =o (3.19)
Srvbl-ay np =o; (3.20)

Dlogy— Dlog B, = nlog¥(@). (3.21)

Eliminating & from the first two equations gives
an equation that along with the other equation gives two

unknowns f and f to solve.

In the example below, we have used iterative
method of solution in this case also.

4. AN EXAMPLE

Nelson (1981) reported data on the failure of 40
motorettes with a new class-H insulation material in a
motorette test performed at four elevated temperature
settings at 190°C; 220°C; 240°C and 260°C: For each
test temperature, the 10 motorettes were periodically
examined for insulation failure and the given failure
time is midway between the inspection time when the
failure was found and the time of the previous
inspection.
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Table 1. Hours to failure for class-H insulation material

Table 2. Maximum likelihood estimates of the parameters

190°C 220°C 24°0C 260°C Model | Parameters Estimates Standard error
7228 1764 1175 600 I % 0.00433 0.00123
7228 2436 1175 744 o 0.77118 0.17239
7208 2436 1521 744 i 107.42389 24.11420
8448 2436 1569 744 I By 0.00074 0.00026
9167 2436 1617 912 o 0.13956 0.03187
9167 2436 1665 1128 a 19.18338 4.25277
9167 3108 1665 1320 1T 0%‘ 4.16547 1.17190
9167 3108 1713 1464 o 0.69342 0.15900
10511 3108 1761 1608 B 124.75500 28.04153
10511 3108 1953 1896 v B 23.07059 8.69414
Source : Nelson (1971) B 5.43162 128748
o 17.19921 3.80919

4.1 Estimates of the Parameters

For illustrative purposes, we fit the gamma
regression model to these data. Nelson (1981) (see also
Singpurwala (1972)) used the same data in the
Arrhenius model by employing a combination of
graphical and analytic techniques based upon the
assumptions that the log-failure times are normally
distributed with constant variance and the mean
depends on temperature. Actually the main purpose of
the experiment was to estimate insulation life at 180°C
exceeded a minimum requirement. Bhattacharyya and
Fries (1982b) fit an inverse Gaussian reciprocal linear
model to be adequate for this data. They choose the x
values given by x = 107 (£ — 180%), 7 denoting the
temperature in centigrade. Babu and Chaubey (1996)
used this data to fit an inverse Gaussian model given
by y; ~ IG(6, y) where ,U;l_l =0 = § + O, while
demonstrating the resampling procedure in this setting.
We used the NLP procedure of SAS (1997) to carry out
the maximum likelihood method that provides estimates
of the parameters, Hessian matrix, covariance matrix,
correlation matrix and confidence limits (the program
is available from the authors upon request).

In the table below we summarise the estimates of
parameters along with their standard errors.

The estimates for model I have smaller standard
errors in general as compared to model Il and a similar
observation is recorded between model III and model
IV. However, this is not enough for model choice; some
goodness of fit criterion has to be employed (see
Section 4.3).

4.2 Confidence Intervals for Different Parameters

An approximation to 100 (1 — @)% confidence
interval for a parameter 6 (say) is given by

b+ 2, [S.E.(é)} (4.1)

where Z, is the 100 (1 — @)-th percentile of the
2

standard normal distribution. The table below gives
approximate 90% confidence intervals for the
parameters in the four fitted models. It is seen that for
all the confidence intervals corresponding to the
parameters ¢, 0:1* B ﬂl* that signify the dependence
of the mean on x; lower limits are positive. This implies
that the assumed models validate the inverse relation
between the temperature and mean failure time.

Table 3. Confidence intervals for the parameters

Model | Parameters | Lower limit Upper limit
I o, 0.002307 0.006353
o 0.487600 1.054760

Yo 67.756031 147.091749

11 5, 0.000323 0.001163
B 0.087133 0.191986

o 12.187573 26.179187

11 0%‘ 2.237695 6.093246
0’1* 0.431865 0.954975

Yo 78.626683 | 170.883317

v ﬂS 8.768730 37.372450
,31* 3.313715 7.549525

o 10.933093 23.465328
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4.3 Goodness of Fit of the Models

To determine the adequacy of the models we use
the predicted values computed from the formula

N

y = A, =a. b, (4.2)
where &, and Bx,- depend on the model used. For

judging the goodness of fit we use the following
measures

n

L= 15—yl (4.3)
i=1
< 2

Ly= 19—yl (4.4)
i=1

For comparative purpose, we can use
Bhattacharyya and Fries (1982b) result or Babu and
Chaubey (1996) result with respect to IG modelling.
Bhattacharyya and Fries (1982b) find the inverse
Gaussian reciprocal linear model to be adequate for this
data excluding the 2600C setting, where as Babu and
Chaubey (1996) used this data for both batches. We
reproduce the estimates from Babu and Chaubey (1996)
for the reciprocal linear model

& =0.03731, & =7.317285 (4.5)
and use
1
5}1. = (46)
0+ 1x;

The table below summarizes the L, L, measures
for different fitted models.

Table 4. L, and L, measures for different models

Model L, L,
I 19068.23003 18101706.78
11 18937.04473 18119160.63
111 19651.03725 19547356.61
v 20946.02746 24074289.70
1G Model 18784.80094 18231932.08

Among the proposed models, model II is the best
model according to the L, norm, however, model II
comes out to be on the top according to L, norm. The
IG-model comes out to be slightly better than model I
according to the L, norm. Thus, models I and II may
be considered to be competitors of the IG reciprocal
linear model. The closeness of models I and II to the

IG model is not very surprising as both these models
are very similar; the form of the dependence of the
mean failure time on x, is the same for both the models,
the difference lies in the distribution of the failure times.
Models IIT and IV may not be realistic in retrospect at
low temperatures as they imply that at zero temperature,
mean failure time is infinite.

4.4 Conclusions

It is observed that the reciprocal linear model for
scale parametrization gives the better result than other
types according to L, norm, but model I, i.e. shape
parametrization is slightly better according to L, norm.
The IG model (Babu and Chaubey 1996) provides best
fit amongst all the models considered here according
to the L, norm but this property is lost when we
consider L, norm.

Yet another set of alternative models may be built
in these situations considering the use of power
transformation family of dependent variable before
carrying out the regression analysis. Because power
transformation family is useful for correcting skewness
of the distribution of error terms, unequal error
variances and non-linearity of the regression function,
this may be an interesting proposition for future
research. The models proposed here show very
promising for applications for analyzing the relationship
between non-negative random variables. However,
further investigations through a simulation study may
be essential that can provide clearer guidelines indicated
which model could be better to fit the data in practice.
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