
1.	 INTRODUCTION
Experimenter is often encountered with a situation 

in which observation(s) of particular plot(s) may be 
lost or much affected by some extraneous causes that 
it would not be desirable to regard these observations 
as normal experimental observations and the omissions 
naturally affect the method of analysis. The data with 
missing observations are generally analyzed through 
missing plot techniques like estimating the missing 
value(s) by minimizing the residual sum of squares 
iteratively or non iteratively or by the method of fitting 
constants or by using the covariates.

Expected Maximization algorithm is one of the 
popular methods used to estimate missing information. 
Further it is an ad-hoc approach for the estimation 
of missing data by choosing arbitrarily initial values 
for missing data. The estimated missing values and 
parameters were iteratively updated until they converge. 
The name Expected Maximization algorithm was given 
by Dempster, Laird and Rubin (1977).

DEFINITION 1.1: The experimental material 
is partitioned into ‘b’ homogeneous groups of 
experimental units called blocks such that each 
block contains ‘v’ experimental units. Assign the ‘v’ 

treatments to the experimental units with a separate 
randomization for each block, such a design is said to 
be Randomized Block Design (RBD).

Let Yij be the response correspond to ith treatment 
in jth block (i =1, 2, … v; j=1, 2, … b) (let N=vb, 
p=v+b+1). Assume that the responses are independent 
and follow Normal distribution with mean µ and 
variance σ2. The general linear model for a randomized 
block design is

Y = Xβ + ε� (1.1)
where YNx1 be the vector of observations Yij, XNxp 

is the design matrix and βpx1 is the vector of parameters 
µ, αi, βj; where μ is the general mean, αi is the effect due 
to the ith of the treatment, βj is the effect due to the jth 
block, and ε ~ N(0, σ2In).

DEFINITION 1.2: The experimental material is 
partitioned into v2 experimental units in such a way 
that the experimental units can be grouped (blocking) 
in two ways, row wise and column wise, such that each 
contains ‘v’ experimental units. The ‘v’ treatments are 
allocated to the experimental units in such a way that 
each treatment occurs once in each row, and in each 
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column such a design is said to be Latin Square Design 
(LSD).

Let Yijk be the response corresponding to the kth 
treatment belongs to ith row, jth column and ( i = 1, 2, 
… v; j = 1, 2, … v, k = 1, 2, … v), N= v2 and p=3v+1 
Assume Yijk ~ N (µ, σ2). The general linear model for a 
Latin square design is

Y = Xβ + ε � (1.2)
where YNx1 be the vector of observations Yij, XNxp 

is the design matrix and βpx1 is the vector of parameters 
µ, αi, βj γk and ε ~ N(0, σ2In). where μ is the general 
mean, αi is the effect due to the ith of the row, βj is the 
effect due to the jth column, γk is the effect due to the kth 
treatment (i=1, 2, … v; j=1, 2, … v, k=1, 2, … v).

DEFINITION 1.3: Let X1, X2 , … Xv be the 
set of ‘v’ factors, each has ‘s’ levels used for the 
experimentation and let D = (( xu1, xu2, … , xuv) ) be the 
design matrix, where xui be the level of the ith factor in 
the uth design point. Let Yu denote the response at the 
uth design point. The functional relationship between 
the response and factor combination is E(Yu) = f (xu1, 
xu2, …, xuv) called ‘Response Surface’, the design used 
for fitting the response surface is called a ‘Response 
Surface Design’, and the model fitted to the design and 
responses is called ‘Response Surface Design Model’.

2.	 EXPECTED MAXIMIZATION 
ALGORITHM ESTIMATION FOR 
MISSING RESPONSES FOR AN 
EXPERIMENTAL DESIGN MODEL
The Expected Maximization algorithm detailed 

step by step procedure for implementation to any 
experimental design model is presented below.
Step 1: �Let x = (x1, x2, …, xn) be the observed sample 

drawn from a population with probability 
density function P(x, θ), where θ is unknown.

Step 2: �Evaluate the likelihood function of the observed 
sample L(x, θ) and log of the L(x, θ). Choose 
some arbitrary values initially for the missing 
information.

Step 3: �Evaluate the expected value of log likelihood 
function E[log L(x, θ)] and evaluate the 
improved version of the parameter that 
maximizes the expected value of log of 
Likelihood function.

Step 4: �Repeat the step 3 and step 4 until two successive 
iterations difference of the estimated values for 
the parameter is negligible.

Now, consider the general linear model for an 
experimental design model

Y = Xβ + ε� (2.1)
where, YNx1 be the vector of responses, β k×1 be the 

vector of parameters, XN×k be the design matrix of an 
experiment, ε be the vector of random error. Assume Y 
̴ N(µy, σy

2) and ε ̴ NI (0, σy
2).

Let Y = [Y1, Y2, … YN-m, | YN-m+1, … YN]′ be the 
vector of ‘N’ responses with (N-m) known and ‘m’ 
missing responses. Assume E(Y) = µy = Xβ. Then the 
partitioned model of (2.1) is

N m N m N m

m m m

Y X
Y X

− − −ε     
= β +     ε     

� (2.2)

where YN-m is the vector of (N-m) known response 
values and Ym is the vector of ‘m’ missing response 
values, XN-m and Xm are the partitioned design matrices 
corresponding to the known and missing response 
vectors. Assume ε is also partitioned accordingly.

The likelihood function of the ‘N’ observed 
responses Y including missing is

N m
2 2 N/2 2

y y j y2
j 1y

N
2

j y
j N m 1

1L(Y/ , ) (2 ) exp (Y )
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= − +
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∑

� (2.3)
The log of the likelihood function is
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� (2.4)
The maximum likelihood estimates for the µ and 

σ2 are
N
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2
y y2

y

N m N
2 2 2
y j y j y

j 1 j N m 1

log L(Y/ , ) 0

1ˆ ˆ ˆ(Y ) (Y )
N

−

= = − +

∂
µ σ =
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∑ ∑ � (2.6)

The expected value of log of likelihood
2 2

y y

N m N
2 2

j y j y2
j 1 j N m 1y

N NE log L(Y/ , ) Y log 2 log
2 2

1 (Y ) (Y ) dY
2

y

−

= = − +
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∫

∑ ∑

� (2.7)
The estimate of missing response can be obtained 

from E [ log L(Y)] as

E [Ym / Y, X) = Xm
( )ˆ kβ � (2.8)

The conditional the expectation for missing 
response is

E [ Ym
2 / Y, X) = [ Xm

( )ˆ kβ  ] ′ [ Xm
( )ˆ kβ ] + σ2 (k) �

� (2.9)
From (2.4) and E(Y) = Xβ, we have

2 2
y y y

N m N
2 2

j j j j2
j 1 j N m 1y

N NlogL(Y/ , ) Log(Y) log 2 log
2 2

1 (Y X ) (Y X )
2

−

= = − +

µ σ = − π − σ −

 
− β + − β σ  

∑ ∑

The pastiche estimates β̂ , 2σ̂  and mŶ  can be 
obtained by minimizing the residual sum of squares as

( ) ( )N m N

j j j j j j j j
j 1 j N m 1

log L(Y) 0

X Y X X X Y X X 0
−

= = − +

∂
=

∂β
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1
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where m = N-m+1, … , N.
(k 1) (k 1)

m m
ˆŶ X+ +⇒ = β �  (2.12)

Set the values for missing responses be either zero 
or mean of known responses or any arbitrary value. The 
parameters 2σ̂ , β̂  and missing responses mŶ  are 
valuated iteratively using the equations (2.10), (2.11) 
and (2.12) till the values for parameters and missing 
responses are stabilized.

3.	 EXPECTED MAXIMIZATION 
ESTIMATION WITH DIFFERENT 
INITIAL SEEDS
The missing responses are estimated in an iterative 

approach using Expected maximization algorithm with 
different initial values for missing responses as either 
zeroes or mean of known response or arbitrary values. 
In each of the case the estimated parameter and its 
successive parameters are derived and presented below.

3.1	 Estimation with Seed Value Zero
Assume Ym = 0m (zero vector), then the model 

(2.1) becomes

N m

m

Y
0

− 
 
 

 = N-m

m

X
X

 
β 

 
 + N-m

m

 ε
 ε 

� (3.1)
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Let (1)β  denotes the first estimate of β with the 
initial value set to zero. The estimate of vector of 
parameters and missing responses from (2.10) and 
(2.12) as

( )1 1
N m N m(X X) (X Y )−
− −′ ′β = � (3.2)

(1) (1)
m mY X= β  � (3.3)

The second estimate of the parameter is β (2) is
(2) 1 (1)

m m N m N m(X X) (X Y X Y )−
− −′ ′ ′β = +

1 1
m m N m N m N m N m(X X) X X (X X) X Y X Y− −

− − − −′ ′ ′ ′ ′ = + 

1 1
N m N m N m N m

1
N m N m

(X X) (X X X X )(X X) X Y

(X X) X Y

− −
− − − −

−
− −

′ ′ ′ ′ ′= − +

′ ′

(2) 1 (1)
N m N m2I (X X) (X X )−
− −′ ′ β = − β 

  � (3.4)
The modified estimate of response is given by

(2) 1 (2)
m m N m N mY X 2I (X X) (X X )−

− −′ ′ = − β 
 � (3.5)

The iterative procedure is continued until the two 
successive responses difference is negligible.

3.2	 Estimation with Seed Value Mean of Known 
Responses
Assume Ym = Y N-m i.e. Mean of the known (N-m) 

responses. Then the model (2.1) becomes

N m
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Y
Y
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X

 
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m

 ε
 ε 

� (3.6)

Let (1)β  denotes the first estimate of β with the 
initial values set to mean of the known responses. The 
estimate of vector of parameter and missing responses 
from (2.10) and (2.12) as

( ) ( )1(1)
m N m N m N mX X X Y X Y−

− − −′ ′ ′β = + � (3.7)
(1)
mY  = Xm (1)β  � (3.8)

The modified estimates for the parameter and 
missing response are
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−
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−
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′ ′

1 1
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1
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−
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

{
}

1 1
N m N m m N m

N m N m

(X X) (X X X X ) (X X) X Y

X Y

− −
− − −

− −

′ ′ ′ ′ ′= − +
′ + β


1 (1)
N m N mI (X X) (X X )−
− −′ ′ = − β +β 



(2)β = (I-B) (1)β +β  , where 1
N m N mB (X X) (X X )−
− −′ ′=

� (3.9)
The modified estimate of response is given by

{ }(2) 1 (1)
m m m N-m N m N mY X (X X) (X Y ) (X Y )−

− −
 ′ ′ ′= + 

(2) (1)
m mY X (I B) = − β +β 



� (3.10)
This iterative procedure is continued until the two 

successive responses difference is negligible.

3.3	 Estimation with Seed Value is an Arbitrary 
Value
Assume Ym=Am i.e. arbitrary value. Then the 

model (2.1) becomes

N m

m

Y
A

− 
 
 

 = N-m

m

X
X

 
 
 

β  + N m

m

−ε 
 ε 

� (3.11)

Let ( )1
Aβ  denote the first estimate of β with the initial 

values set to arbitrary value. The estimate of vector of 
parameter and missing response from (2.10) and (2.12) 
as

( )1
Aβ

 = (XʹX)-1(XʹmA+XʹN-m YN-m) � (3.12)
(1)
AY  = Xm ( )1

Aβ
 � (3.13)

The modified estimates for parameters and missing 
responses are

( ) ( )2 11
A m A N m N m(X X) (X Y X Y )−

− −′ ′ ′β = + 

( ) ( )11
m m m m N m N m

N m N m

(X X) X X X X X A X Y

X Y )

−−
− −

− −

′ ′ ′ ′ ′= + +
′ 

( )( )( )11
m m m m N m N m(X X) X X X X X A X Y−−

− −
 ′ ′ ′ ′ ′= + +β
 



1 1
N m N m m m

1
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(X X) (X X X X ) (X X) X A
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−
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′ ′ ′ ′ ′= − +
′ ′  + β


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{
}

1 1
N m N m m m

N m N m

(X X) (X X X X ) (X X) X A

X Y

− −
− −

− −

′ ′ ′ ′ ′= − +
′ + β


1 (1)
N m N mI (X X) (X X )−
− −′ ′ = − β +β 

 

( )2β = (I-B) ( )1β +β  , where 1
N m N mB (X X) (X X )−
− −′ ′=

� (3.14)
The modified estimate of response is given by

(2) (1)
m mY X (I B) = − β +β 

  � (3.15)
This iterative procedure is continued until the two 

successive responses difference is negligible.

3.4	 Inter Relationships Between β̂ , β , β  & β

The properties of the estimated parameters such as 
interrelationship between the parameter, unbiasedness 
variances and covariance of the parameters and 
responses presented below.

3.4.1. Parametric Relationship Between β̂  and β

The relationship between estimated of parameters 
β̂  (least square) and β  (zero as initial guess) is 
established and is presented below.

1
N m N m N m N m

ˆ (X X ) X Y−
− − − −′ ′β =

1' ' '
m m N m N mX X X X X Y

−

− − = − 
11

m m N m N mX X X X (X X) X X X Y
−−

− −′ ′ ′ ′ ′ = − 
11 1

m m N m N m(X X) I X X (X X) X Y
−− −

− −′ ′ ′ ′ = − 

{ } 11 1 1
m m m m N m N m(X X) I X I X (X X) X X (X X) X Y

−− − −
− −

 ′ ′ ′ ′ ′ ′= + −  

{ } 11 1 1
m m m m N m N mI (X X) X I X (X X) X X (X X) X Y

−− − −
− −

 ′ ′ ′ ′ ′ ′= + −  

1 (1)
m m

ˆ I (X X) X MX−′ ′ β = + β 
 ;

 where { } 11
m mM I X (X X) X

−−′ ′= − .

3.4.2 Relationship Between β  and β
The relationship between the estimated parameters 

β  (zero as the initial values) and β  (mean of known 
responses as initial value) is established and presented 
below.

(1) 1 1
m N m N m N m(X X) X Y (X X) X Y− −

− − −′ ′ ′ ′β = +

( ) 11 1 1 (1)
m N m m m(X X) X Y I (X X) X MX

−− −
−′ ′ ′ ′ β = + + β 



3.4.3 Parametric Relations Between β  and β

The relationship between the estimated parameters 
β  (zero as initial values) and initial values β  (‘arbitrary 
value’ as initial value) is established and presented 
below.

(1) 1
m m N m N m(X X) (X A X Y )−

− −′ ′ ′β = +

(1) 1
m m(X X) (X A )−′ ′β = +β 

EXAMPLE 3.1: Nigam and Gupta (1979) 
conducted a manorial trail with six of farm Yard Manus 
with four replications in a random block design layout 
to study the rate of decomposition of organic matters 
in the soil and its synthetic capacity in soil on cotton 
crop. Treatments: six levels of farm yard manus are 
0, 12.4, 24.7, 61.18, 123.6, 247.2 as treatments and 
with four Replications each of Plot size gross:27.42 
m×20.12m, Net: 8.23m ×7.32 m., the yield per plot in 
kg for different levels of farm Yard Manus is given the 
Table 1.

Table 1.

Levels of farm
yard manus

Replications

I II III IV

1 6.9 4.6 6.10 4.81

2 6.48 5.57 4.28 4.45

3 6.52 7.6 5.3 5.3

4 Y41 6.65 6.75 7.75

5 6 6.18 5.5 5.5

6 7.9 7.57 6.8 7.45

Assume Y41 = 0 (zero), 6.17217(Mean of known 
responses) and 5 (arbitrary). The stabilized estimated 

values are â̂ = [4.41086, 0.08892, -0.31858, 0.66642, 
1.77626, 0.28142, 1.91642, 1.82222, 1.21566, 0.64233, 
0.73066]′ and = 8.00933.

EXAMPLE 3.2: The following are the field layout 
and yields in bushes per acre of an experiment on 
dusting wheat with Sulphur to control stem rust. The 
treatments are A-dusted before rains, B- dusted after 
rains, C- dusted once each week, D- drifting once each 
week, E- control or check. Analyze the data presented 
in the Table 2.
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Table 2.

B
4.9

D
6.4

E
3.3

A
9.5

C
X

C
9.3

A
4.0

B
6.2

E
5.1

D
5.4

D
7.6

C
15.4

A
6.5

B
6.0

E
4.6

E
6.3

B
7.6

C
13.2

D
8.6

A
4.9

A
9.3

E
6.3

D
Y

C
15.9

B
7.6

Assume Y41 = 0 (zero), The stabilized estimated 
values are β̂= [5.21875, -0.46625, -0.84625, 6.14375, 
2.57375, -2.18625, 2.20375, -1.30625, 0.71375, 
0.81375, 2.79375, 0.17375, 2.63375, 0.81375, 1.71375, 
-0.11625 ]′ and = 8.009333 and estimated missing 
responses are 13.45, 11.4

EXAMPLE 3.3: Let us consider a response surface 
design conducted with three factors each with three 
levels with 27 design points given in the design matrix 
X27x10. Assume the response vector Y satisfying second 
order response surface model. The design points of 
matrix are (-1 -1 0 0) (1 -1 0 0) (-1 1 0 0) (1 1 0 0) (0 
0 -1 -1) (0 0 1 -1) (0 0 -1 1) (0 0 1 1) (0 0 0 0) (-1 0 0 
-1) (1 0 0 -1) (-1 0 0 1) (1 0 0 1) (0 -1 -1 0) (0 1 -1 0) 
(0 -1 1 0) (0 1 1 0) (0 0 0 0) (0 -1 0 -1) (0 1 0 -1) (0 -1 

0 1) (0 1 0 1) (-1 0 -1 0) (1 0 -1 0) (-1 0 1 0) (1 0 1 0) 
(0 0 0 0). The vector of responses Y corresponding at 
the design points are given below and found that the 
response values missing at 3rd, 12th and 19th and 25th 
design points.

Y = [11.28 8.44 Y3 7.71 8.94 10.9 11.85 11.03 8.26 
7.87 12.08 Y12 7.98 10.48 10.14 10.22 10.53 9.5 Y19 
11.02 10.98 9.56 8.78 9.02 Y25 8.24 9.79]ʹ. (Fig. 1)

The parameter β and missing responses are 
estimated. The resulting estimated values when the 
initial values as taken Y3 = Y12 = Y19 = Y25 = 0 , 9.76522 
(Mean of Known responses) and 10 (arbitrary), the 
estimated values are stabilizes various iterations and 
=[9.93257 -0.14697 -0.39313 0.14316 -1.07302 
0.24101 0.35626 0.5652 -0.50198 0.1625] and 
Ŷ  = [8.2892, 9.00651, 10.5667, 10.00791] β̂

4.	 COMPARISON OF ESTIMATED 
PARAMETERS AND RESPONSES
A table of comparison of mean and variances 

of responses before and after estimation of missing 
responses and estimated parameters and responses using 
the two approaches, mean square error and confidence 
interval for the parameters with 95% confidence are is 
presented in Table 3.

The (X′X), (X′X)-1, can be obtained respectively as

 and

Fig. 1
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5.	 CONCLUSIONS
1.	 Expected Maximization algorithm is maximizing 

pastiche estimates of parameters based on the 
observed sample and is an alternative approach 
to the least square method for the estimation 
of missing responses in Design and analysis of 
experiments

2.	 Expected Maximization estimate is derived from 
the distribution of responses whereas least square 
estimate is obtained from the model and both are 
equally efficient.

3.	 The E-step of each iteration only involves taking 
expectations over complete data conditional 
distributions and the M-step of each iteration 
requires complete data ML-estimation, which is 
often in simple closed form with increasing of 
likelihood in each iteration and linearly converges.

4.	 If the number of missing responses increases, the 
difficulty level for estimating them is increase in 
both the approaches.

5.	 The number of iterations is depending on the initial 
value chosen, variance of the known responses, 
number of missing responses and on the design 
matrix.

6.	 The iterative procedures of Yates (1933) and 
Healy and Westmascat (1956) are also providing 
the same results as that of Expected Maximization 
approaches.

7.	 The relationship between the parameters for 
different assumptions for missing values are 
developed.
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Table 3. Comparison Table

Example 3.1
(Single Missing)

Example 3.2
(Two Missing)

Example 3.3
(Four Missing)

Mean
(known responses)

6.17217 7.56087 9.76522

Variance
(known responses)

1.20446 11.27794 1.77504

Least Square Estimates
( Missing values )

8.00934 13.45
11.4

8.2892, 9.00651
10.5667, 10.00791

Expected Maximization Estimates (Missing 
values )

8.00933 13.45
11.4

8.2892, 9.00651
10.5667, 10.00791

Mean of Responses (including estimated) 6.24872 7.95 9.72112

Variance of responses (including estimated) 1.29273 12.23958 1.63284

Estimated Parameters 4.41086, 0.08892,
-0.31858, 0.66642, 1.77626, 
0.28142, 1.91642, 1.82222, 
1.21566, 0.64233, 0.73066

5.21875, -0.46625,
-0.84625, 6.14375, 2.57375, -2.18625, 
2.20375, -1.30625, 0.71375, 0.81375, 
2.79375, 0.17375, 2.63375, 0.81375, 

1.71375, -0.11625

9.93257, -0.14697
-0.39313, 0.14316
-1.07302, 0.24101 
0.35626, 0.5652
-0.50198, 0.1625

Mean Square Error 0.50509 2.527 —

Lower Limits 4.11749, -0.20446
-0.61196, 0.37304 1.48288, 

-0.01196
1.62304, 1.52884 0.92228, 

0.34895 0.43728

4.5638, -1.12119,
-1.50119, 5.48881, 1.91881, -2.84119, 
1.54881, -1.96119, 0.05881, 0.15881, 
2.13881, -0.48119, 1.97881, 0.15881, 

1.05881, -0.77119

8.78174, -0.91897
-1.16513, -0.62884
-2.1648, -0.85076
-0.73551, -0.77194
-1.83912, -1.17464

Upper limits 4.70424, 0.3823
-0.02521, 0.9598 2.06964, 0.5748
2.2098, 2.1156 1.50904, 0.93571 

1.02404

5.87369, 0.18869,
-0.19131, 6.79869 3.22869, -1.5313
2.85869, -0.65131 1.36869, 1.46869 
3.44869, 0.82869 3.28869, 1.46869 

2.36869, 0.53869

11.0834, 0.62503
0.37888, 0.91516
0.01875, 1.33279
1.44804, 1.90234
0.83517, 1.4996
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