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SUMMARY

Data matrices with rows which are independent samples from some population were considered by Fisher and Wishart in
the 1930’s. More, recently the abstract sets of such random matrices have been studied at length and their limit theorems proven.
Some of these results along with the associated entropies will be discussed and their applications in modern communication

theory will be mentioned.
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1. INTRODUCTION

Statisticians often study the fluctuation theory of
correlations in which they have to analyse high-
dimensional data by looking at the eigenvalue (or more
precisely singular values) of (random) correlation
matrices. For example (taken from Diaconis (2003)),
consider the 100 x 5 matrix X (X;; = score of the ith
student in jth examination; 1 <7< 100; 1 <j < 5) and
note that the norm one vector o* which maximizes the
variance of the numbers {a.X; }}2({ is the first principal
component and the vector o** maximizing the variance
subject to normalisation and orthogonality to o* is the
second one and so on. The o* is approximately the
average of the five scores and o** is approximately the
difference between the averages of the first two and of
the last three tests, and so on. What about the question
of the stability of the principal components under
random fluctuations in the data X;? This is the first
question in random matrix theory: the fluctuations of
eigenvalues or singular values of random matrices.
Wishart (1928) and Fisher (1939) studied the
distribution of the principal components when the

entries of the n X p data matrix X are i.i.d. Gaussian;
while more recently Marcenko and Pastur (1967)
considered the empirical distribution of the whole
collection of the singular values of such matrices i.e.
showed that

pfl {# eigenvalues < nt} — an absolutely
continuous function G(¢); when n and p T o such that
n/p — y> 0. There are many other applications studied
in the literature. But here I shall limit myself to a few
of the earlier questions raised and refer the reader to
the beautiful article/lecture by Diaconis (2003) for
many more such results.

In order to focus our attention, let H be a n X n
real symmetric matrix with independent and identical
Gaussian N(0; 1/n)-entries. Note that we can consider
the matrix family H, as a “non-commutative random

1 n
variable” with the expectation 7,(H,) = —ZE (H,.:)
=1 ’

1
= —[E (trH,,), where [ is the classical expectation and
n
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also that 7,(H2) = 1 (the choice of normalisation).
Then one has a form of Wigner’s theorem that

1
2m 2m
Theorem 1.1 7,(H,") — ﬁ(m) Catalan

numbers, as n T o which are the 2m'™ moments
of the semi-circle distribution density w : w(x) =
(27[)71(4 - xz)l/2 for | x| £2 and = 0 otherwise.

In this sense, the semi-circle law plays the same
role in free probability as that of the (stable) normal
law of classical probability theory.

Next, we look at real symmetric matrices, dropping
the Gaussian assumption. Let H be # X n random matrix
with 1.i.d. entries with finite moments of all orders, and
let 4,(H); 4,(H), ..., 4,(H) be the eigenvalues in
increasing order and consider the random atomic
measure

1n [6(4(H) + KA4L,H)) + ... + &4,(H)]

as the empirical eigenvalue distribution of H. Its

1 n
expectation value uy = —E E 51(27 (H)) | is called
n ‘
Jj=1

the mean eigenvalue distribution of H and it is easy to
see that

j X" 11 (x) dx = Ly H") = z,(H").
n

The next result shows that the semi-circle law is
independent of the details of the distribution of the
entries.

Theorem 1.2 Let {H,,} be independent real symmetric
matrix with finite moments such that E(H,, ;) = 0 and
E(Hzij) = 1/n for 1 £i <j < n. If furthermore,

n,

sup [E|H, =0 (0" for each

N/
1<i<j<n

keNasn — oo,

then fy, the mean eigenvalue distribution of H tends
to the semi-circle law.

Another way of interpreting this result is the
following. {H,} is a family of non-commutative
random variable with a certain distribution family {¢,}
(positive linear functionals on the *-algebra generated

by H) and ¢, converges to the semi-circle law in weak
*-topology.
Example 1.3 Again consider n X n standard symmetric
Gaussian matrix T, (i.e. (7}, ;) = 0 and E(Y;zij) =
(n+ i)_l(l + dy) so that as before 1, (Tnz) =1).

With respect to the Lebesgue measure 4T, =

[147; on R™"V? the density p(T) is given as p(T)

i<j

n+l

=C, exp {— Tr Tz}, where C, is a normalising
constant. It is to be noted that this measure is invariant
under orthogonal transformations, i.e. T > O'TO
where O'O = 1. In fact the standard symmetric Gaussian
matrices almost characterises this measure.

The measure induced by dT above on the ordered
space of eigenvalues of T has the density

dT ﬂ.n(n+1) 4
PE— / 114 - 4]
IT_44 TI_TG/2i<
which is related to Selberg Trace formula.

Next we look at U(n); the compact group of
n X n unitary matrices and note that there is a unique
invariant Haar measure y, on U(n). Since the
eigenvalues of an unitary matrix are on the unit circle
7, the joint probability of its eigenvalues will be
supported on 7. The measure on 7" induced from Haar
measure ¥, has the form
. 12
Qo  T]|€% - % I1,_46;
j<k
A standard unitary random matrix U is a non-
commutative random variable with respect to the

1 & )
functional 7,(U) = — E E(ele-’) . Since the expectation
n«
Jj=1

[E is with respect to the H invariant Haar measurey,, it

follows that Z'n(Uk) = 0 V non-zero k. The above
expression of the measure on 7" can be derived from
the earlier expression for the measure induced as the
ordered space of eigenvalues of a real symmetric matrix
by looking at the real and imaginary parts of the unitary
matrix.
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2. RANDOM WALK ON FREE GROUPS AND
FREE PROBABILITY

A free group IF, with n generators g, g, ..., g, 1S
the set of all words with these n alphabets, their
assigned inverses and the unit symbol e, with no
‘grammar or rules’ and the law of multiplication is
Jjuxtaposition. Consider a random walk on [F, which
starts from the unit and one step is the move from the
group element g to hg with probability (2n) " if h e {g

22 2 81 L., g, 1} . Then the probability of return to
the unit in m steps is of the form

1 _
P(n,m)= ——— ((Lg, + Lgi" + ...
(2n)
+Lg,+ Lg')"5,. 5,)

where we have observed that in (5(G), g —> Lgis a
unitary representation given by

(Lgé) ) = &g 'g) for & € (*(G) and

5g stands for the characteristic function of the element
g. Note that P(n, m) = 0 if m is odd, and

m

n
P(n, 2m) = 2n) *"n™ Z X, i | G-, ) where
j=1

X, = % (Lg it Lg}l). It’s asymptotic behaviour as

1 1 2m b
Q2n)" {m+1 || m may e

compared with the asymptotic behaviour in Theorem
1.1 for large symmetric random matrices. Thus we have
a sort of central limit theorem for the array X, 1, X,,», ...
Xy n of non-commuting random variables since

n — o : P(n, 2m) =

1 e .
(—\/, E ';_an j ] converges in distribution (or in even
P =1%n,

moments) to the semi-circle law.

If we set ¢ (X) =(X0,, 6,), then we note that X, ;’s
satisfy the following property

@ (P1(X,, 1)) Po(X,,2) - Pr(X,, i) = 0

for all polynomials Py, ..., Py such that ¢ (Py (X))
= 0 and with i(1) # i(2) # ... # i(k). Such non-
commuting random variables are called free, following
Voiculescu (2000).

Now we can interpret the limit laws of symmetric
random Gaussian and of unitary standard matrices in
the light of the definition of “freeness” of random
variables that we have just introduced. Another way of
interpreting Theorem 1.1 is as follows. Let X, (), X,(n)
be independent random symmetric matrices with the
same distribution as that of H,,. Then it is clear by the
properties of the convolution of Gaussian distributions

1 n
that ﬁz =1
note that

7,X,(m)" — 7, ()] X)) - 7,(6m))]) =0

if and only if 7, (X () Xa(m)") = 7, (X1 ()7, (o)),
which is equivalent to saying that

Xj(n) also has the same distribution. We

1
n—ZZE iayodiy@ie) - i)
Bj(k+1)j(k+2) Bj(kJrC)j(l))

1
= n—ZZE inyadiye) - Awin)
B (Bjg1yar2) -+ By Bjrn)-

with A = X(n) and B = X,(n) for simplicity and with
summation over all indices. The two sides are equal in
many cases, in particular when k or ¢ are odd or when
both are 0. However, the difference goes to 0 as
n — oo as proven by Voiculescu (2000). In other words,
the property of freeness as described above, appears in
the limit or equivalently random symmetric Gaussian
matrices exhibit the asymptotic freeness property.
Similarly one can also show that independent Haar
distributed unitary matrices are also asymptotically free,
thus providing a bridge between random matrix theory
and free probability.

3. LARGE DEVIATIONS AND ENTROPY

First, let us consider the classical case. Let &}, &,,
... be independent standard real Gaussian random
variables and let G be an open set in the space M(RR)
of probability measures on R (with weak *-topology).
Then Sanov’s (or Varadhan’s in a more general context)
theorem says that if the standard Gaussian measure
ve G , then

. I &
Prob {the atomic measure - 2‘1 0 J ¢ )€ G}
J =
= exp (-nC(v, G)),
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where C(v, G) = inf {I(1) : ¢t € G} and I(y) is the rate
function or relative entropy

Iom) = [p() log pr)dx + = [¥’u(dx) + = log 27
2 2
and (dx) = p(x)dx. The first part is the entropy or the

Boltzmaun-Gibbs entropy S(x) = —fp(x) log p(x)dx.

The above theorem says that the probability of a large
deviation from Gaussianity decreases exponentially
with », and the coefficient multiplying # in the exponent
is an infimum of an expression which is essentially the
entropy.

A similar exercise can be carried out for symmetric
i.i.d standard Gaussian matrices using the joint
eigenvalue density of relevant random matrix H,,

Lex ( b )H(

n i<j

A, ;)» where

Z,, is the normalising constant. Thus we can compute
for a neighbourhood G of 1 € M(R):

Prob {the empirical eigenvalue distribution of
H, e G}

= Prob { 26(/1 (H)))e G}
j=1

= ZLnJ‘J‘ exp Zlog|x

i<l

dxl e dx,,

n

where G c R" is defined by the requirement

Za(x )GG}

G ={xeR'|~
jl

Intuitively, when G tends to a point # € M(R),
the approximation:

1
Ylog|—x; |- "= Ff

| 1
= (EH log|x—y[ 4 (dx) p(dy) - 7 szﬂ(dﬂ]

holds for x € G and one gets that

L 1og Prob {lza(zj (H,)e G}
n“<
J

n

1
z—aﬂloglx—ylﬂ(dxw(dy)
+ljx2 (dx) +—=log Z
4 H n’ &

This leads to the “large deviation” statement that

Prob {l 25(/1j (H,))e G} ~ o Cw.G) ’
n“
j

where G is an open set in M(R) not containing the
semi-circle law w and C(w, G) = inf {/(x)| € G} with

1
1) = = [flog | x = y | u(dx)pudy)

+%J‘x2,u(dx) + constant.

In analogy with the classical case, we can identify

S(u) = —%”]og x —y | (dx)u(dy) as the free entropy.

[t is important to note that the probability that the
empirical eigenvalue distribution is different from the
semi-circle law decreases sharply with the increase of
sample size, i.e. as exp(—nzC(w, (3)) in contrast to the
classical case in which the probability for “large
deviation” goes like exp(—nC(v, (5)). Another way of
saying the same thing is that the semi-circle law is a
“stronger attractor” for the empirical distribution for
data matrices than the Gaussian law is for the empirical
real-valued observations. This sharp decrease of ‘error’
with increasing ‘n’ opens up large number of
possibilities in improvements in data-analysis.

We end this section with the following table.

Classical Free
Entropy - Ip(x)logp(x) dx, —12 J. Ilog\ x—y|
where p(x) pdx)u(dy)
d
- L =172 [ p(x)dx [ log
[ x =y p(y) dy,
d
where p(x) = _,u(x) .
dx
(x)
Fisher j[p ]2 Constant J.[p(x)]3dx
Information P()
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4. APPLICATIONS
(i) Statistical Mechanics in Physics

Consider the constant energy surface {x € R" | H(x)
= hy} and the uniform distribution (microcanonical
distribution) u(dx) on it. On the other hand, Maxwell,
Boltzmann and Gibbs also used the canonical measure

ugdx) =7 e P gx on R” such that Iuﬁ (dx) =1 and

_[H(x)uﬂ(dx) = hy. The principle of equivalence of

ensembles of Gibbs asserts that for every continuous
function fon R”, the ensemble averages are equal when
n is large, i.e.,

jf(x)u(dx) = j/(x)uﬁ (dx) for n large.

For the common and the simplest case H(x) =

n

ijz-, the microcanonical ensemble becomes the
j=1
uniform distribution on the sphere and the canonical

measure becomes the product Gaussian measure uz(dx)
= 7 'exp(=3 H(x))dx.

Consider the real orthogonal group O,. Fill an
n X n array with independent draw from standard
Gaussian curve and then perform Gram-Sch2midt
algorithm on this array. We get a map 7 from R" into
O, and under this map the product of the Gaussian
measures gets mapped into the Haar measure on O,. If
fis a continuous function of the first variable x; only,

then one concludes that for M € O,, If(x)u(dx) =
Jj(x)uﬂ(dx), as n — oo using the following result.

Emile Borel proved the following theorem:

Pick M from the Haar distribution on the
orthogonal group O,. Then

L 2
N < —
ProbHaar{ nMy| < x} converges to py _[D_we dt.

This result was extended by Levy and others. This
says that asymptotically the entries ((\Jn M,)) are
Gaussian distributed, though of course that is not true
for the eigenvalues. The above justifies to some extent
what Physicists are doing all the time.

(ii) Communication Sciences [7]

Information theory of wireless communication
channels has become increasingly important because of
the necessity of the efficient use of bandwidth and
power in the face of over-increasing demand of such
services. Fading, wideband, multi-user and multi-
antenna are some of the key characteristics of modern
wireless channels.

As a simple model, consider the linear memory-
less channels of the form y = Hx + n, where x is
K-dim input vector, y is the N-dimensional output
vector, 7 is the N-dim vector modeling the orthogonally
symmetric Gaussian noise and H is the complex valued
random N X K channel matrix. For example, in the
single user case, K is the number of transmitting
antennas while AV is the same for the receiving side. On
the otherhand for DS-CDMA (Direct sequence code-
division multiple access) channel, K = # of users and
N = the gain.

In the first, H is the propagation coefficient for
each transmitting-receiving pair of antennas while for
the second case, each entry of H depend on the received
noise-sequence and fading coefficient, and K =n,J, N
= npG with n; and n, the transmitting and receiving
antennas and J and G the number of users and gain
respectively. Of course, the simplest case is one where
the entries of H are i.i.d. but more realistically, they are
not i.i.d.

Set for a N X N positive matrix A, the normalised
N 1 ¥
distribution function as F (x) = ﬁzé\,’ (A4(A) < x)
j:
so that
N
Fay () =NOW) = kL (x)- K © (x),

where © is the Heavyside ful;ction. T*his is because the
non-zero eigenvalues of HH and H H are identical.

An important indicator of such channels is the

. . . 1
mutual information conditioned on H : N I(x;y | H)

log det(I + aHH*), where

L
N
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2
NE || x|

o = signal-to-noise ration = 5
KE |||

One can easily see that the above =

J.Omlog 1+ ad) dFI;VH*(l). Another measure is the
minimum mean-square error

(MMSE) =~ min

2
n Ellx-Ay|
K aeB (M, ck)

%tr{(] + oH'H)™"}

%j:(l +ox) L dFY . () + (1 - NIK).

These two measures are related by a logarithmic
differentiation with respect to «. The asymptotic
behaviour of any of these measures as N and K tend to
o keeping the aspect ratio N/K constant, is of
importance. Normally, in multi-antenna systems N and
K vary between 8 and 16 while in CDMA, they vary
between 32 and 64. In this context, we have the
following theorem of Marcenko and Pastur (1967).

Theorem 4.1 Let H be a random N x K real matrix
whose entries are zero-mean i.i.d with variance N
Tl;en the empirical distribution of the eigen-values of
H H converges almost surely as K, N — e s.t. N/K —
7, to the Marcenko-Pastur law whose density function
is given as

F=0-7H)6)

+ Qapy - a) (b -x)",
¥ = max(0, y).

a=(1-Jp)%. b= 1+p)?.

where

This asymptotic behaviour exhibit several key
engineering features:

(i) Insensitivity of the asymptotic behaviour to the
details of the distribution of the random matrix
entries of H, which implies that for a single user
multi-antenna link, the asymptotic behaviour hold
for any kind noise/fading satisfies and thus using
binary-valued wave form for CDMA does not lead
to any loss in capacity.

(ii) The eigenvalue histogram converges almost surely
to a deterministic asymptotic eigenvalue
distribution, displaying a kind of Ergodic
behaviour.

(iii) The convergence is very fast. We have already
discussed this property in detail.
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